首页 > 编程语言 > 详细

数据结构和算法-栈

时间:2020-10-31 08:40:42      阅读:24      评论:0      收藏:0      [点我收藏+]

1.栈(Stack)的介绍

栈是一个先入后出(FILO:First In Last Out)的有序列表。

栈(Stack)是限制线性表中元素的插入和删除只能在同一端进行的一种特殊线性表

允许插入和删除的一端,为变化的一端,称为栈顶(Top),另一端为固定的一端,称为栈底(Bottom)

根据栈的定义可知,最先放入栈中元素在栈底,最后放入的元素在栈顶

而删除元素刚好相反,最后放入的元素最先删除,最先放入的元素最后删除

2.入栈图解

技术分享图片

3.出栈图解

技术分享图片

4.应用场景

1)子程序的调用:在跳往子程序前,会先将下个指令的地址存到堆栈中,直到子程序执行完后再将地址取出,以回到原来的程序中。

2)处理递归调用:和子程序的调用类似,只是除了储存下一个指令的地址外,也将参数、区域变量等数据存入堆栈中。

3)表达式的转换[中缀表达式转后缀表达式]与求值(实际解决)。

4)二叉树的遍历

5)图形的深度优先(depth-first)搜索法

5.用数组模拟栈

技术分享图片

思路:

1)定义一个top来表示栈顶,初始化为-1

2)入栈的操作,当有数据加入到栈时,top++; stack[top] = data;

3)出栈的操作,int value = stack[top]; top--; return value;

代码实现:

技术分享图片
//定义一个 ArrayStack 表示栈
class ArrayStack {
    private int maxSize; // 栈的大小
    private int[] stack; // 数组,数组模拟栈,数据就放在该数组
    private int top = -1;// top表示栈顶,初始化为-1
    
    //构造器
    public ArrayStack(int maxSize) {
        this.maxSize = maxSize;
        stack = new int[this.maxSize];
    }
    
    //栈满
    public boolean isFull() {
        return top == maxSize - 1;
    }
    //栈空
    public boolean isEmpty() {
        return top == -1;
    }
    //入栈-push
    public void push(int value) {
        //先判断栈是否满
        if(isFull()) {
            System.out.println("栈满");
            return;
        }
        top++;
        stack[top] = value;
    }
    //出栈-pop, 将栈顶的数据返回
    public int pop() {
        //先判断栈是否空
        if(isEmpty()) {
            //抛出异常
            throw new RuntimeException("栈空,没有数据~");
        }
        int value = stack[top];
        top--;
        return value;
    }
    //显示栈的情况[遍历栈], 遍历时,需要从栈顶开始显示数据
    public void list() {
        if(isEmpty()) {
            System.out.println("栈空,没有数据~~");
            return;
        }
        //需要从栈顶开始显示数据
        for(int i = top; i >= 0 ; i--) {
            System.out.printf("stack[%d]=%d\n", i, stack[i]);
        }
    }
}
技术分享图片

 6.栈实现中缀表达式计算器

中缀表达式就是常见的运算表达式,如(3+4)×5-6

技术分享图片

public class Calculator {

    public static void main(String[] args) {
        //根据前面老师思路,完成表达式的运算
        String expression = "7*2*2-5+1-5+3-4"; // 15//如何处理多位数的问题?
        //创建两个栈,数栈,一个符号栈
        ArrayStack2 numStack = new ArrayStack2(10);
        ArrayStack2 operStack = new ArrayStack2(10);
        //定义需要的相关变量
        int index = 0;//用于扫描
        int num1 = 0; 
        int num2 = 0;
        int oper = 0;
        int res = 0;
        char ch = ‘ ‘; //将每次扫描得到char保存到ch
        String keepNum = ""; //用于拼接 多位数
        //开始while循环的扫描expression
        while(true) {
            //依次得到expression 的每一个字符
            ch = expression.substring(index, index+1).charAt(0);
            //判断ch是什么,然后做相应的处理
            if(operStack.isOper(ch)) {//如果是运算符
                //判断当前的符号栈是否为空
                if(!operStack.isEmpty()) {
                    //如果符号栈有操作符,就进行比较,如果当前的操作符的优先级小于或者等于栈中的操作符,就需要从数栈中pop出两个数,
                    //在从符号栈中pop出一个符号,进行运算,将得到结果,入数栈,然后将当前的操作符入符号栈
                    if(operStack.priority(ch) <= operStack.priority(operStack.peek())) {
                        num1 = numStack.pop();
                        num2 = numStack.pop();
                        oper = operStack.pop();
                        res = numStack.cal(num1, num2, oper);
                        //把运算的结果如数栈
                        numStack.push(res);
                        //然后将当前的操作符入符号栈
                        operStack.push(ch);
                    } else {
                        //如果当前的操作符的优先级大于栈中的操作符, 就直接入符号栈.
                        operStack.push(ch);
                    }
                }else {
                    //如果为空直接入符号栈..
                    operStack.push(ch); // 1 + 3
                }
            } else { //如果是数,则直接入数栈
                
                //numStack.push(ch - 48); //? "1+3" ‘1‘ => 1
                //分析思路
                //1. 当处理多位数时,不能发现是一个数就立即入栈,因为他可能是多位数
                //2. 在处理数,需要向expression的表达式的index 后再看一位,如果是数就进行扫描,如果是符号才入栈
                //3. 因此我们需要定义一个变量 字符串,用于拼接
                
                //处理多位数
                keepNum += ch;
                
                //如果ch已经是expression的最后一位,就直接入栈
                if (index == expression.length() - 1) {
                    numStack.push(Integer.parseInt(keepNum));
                }else{
                
                    //判断下一个字符是不是数字,如果是数字,就继续扫描,如果是运算符,则入栈
                    //注意是看后一位,不是index++
                    if (operStack.isOper(expression.substring(index+1,index+2).charAt(0))) {
                        //如果后一位是运算符,则入栈 keepNum = "1" 或者 "123"
                        numStack.push(Integer.parseInt(keepNum));
                        //重要的!!!!!!, keepNum清空
                        keepNum = "";
                        
                    }
                }
            }
            //让index + 1, 并判断是否扫描到expression最后.
            index++;
            if (index >= expression.length()) {
                break;
            }
        }
        
        //当表达式扫描完毕,就顺序的从 数栈和符号栈中pop出相应的数和符号,并运行.
        while(true) {
            //如果符号栈为空,则计算到最后的结果, 数栈中只有一个数字【结果】
            if(operStack.isEmpty()) {
                break;
            }
            num1 = numStack.pop();
            num2 = numStack.pop();
            oper = operStack.pop();
            res = numStack.cal(num1, num2, oper);
            numStack.push(res);//入栈
        }
        //将数栈的最后数,pop出,就是结果
        int res2 = numStack.pop();
        System.out.printf("表达式 %s = %d", expression, res2);
    }

}

//先创建一个栈,直接使用前面创建好
//定义一个 ArrayStack2 表示栈, 需要扩展功能
class ArrayStack2 {
    private int maxSize; // 栈的大小
    private int[] stack; // 数组,数组模拟栈,数据就放在该数组
    private int top = -1;// top表示栈顶,初始化为-1
    
    //构造器
    public ArrayStack2(int maxSize) {
        this.maxSize = maxSize;
        stack = new int[this.maxSize];
    }
    
    //增加一个方法,可以返回当前栈顶的值, 但是不是真正的pop
    public int peek() {
        return stack[top];
    }
    
    //栈满
    public boolean isFull() {
        return top == maxSize - 1;
    }
    //栈空
    public boolean isEmpty() {
        return top == -1;
    }
    //入栈-push
    public void push(int value) {
        //先判断栈是否满
        if(isFull()) {
            System.out.println("栈满");
            return;
        }
        top++;
        stack[top] = value;
    }
    //出栈-pop, 将栈顶的数据返回
    public int pop() {
        //先判断栈是否空
        if(isEmpty()) {
            //抛出异常
            throw new RuntimeException("栈空,没有数据~");
        }
        int value = stack[top];
        top--;
        return value;
    }
    //显示栈的情况[遍历栈], 遍历时,需要从栈顶开始显示数据
    public void list() {
        if(isEmpty()) {
            System.out.println("栈空,没有数据~~");
            return;
        }
        //需要从栈顶开始显示数据
        for(int i = top; i >= 0 ; i--) {
            System.out.printf("stack[%d]=%d\n", i, stack[i]);
        }
    }
    //返回运算符的优先级,优先级是程序员来确定, 优先级使用数字表示
    //数字越大,则优先级就越高.
    public int priority(int oper) {
        if(oper == ‘*‘ || oper == ‘/‘){
            return 1;
        } else if (oper == ‘+‘ || oper == ‘-‘) {
            return 0;
        } else {
            return -1; // 假定目前的表达式只有 +, - , * , /
        }
    }
    //判断是不是一个运算符
    public boolean isOper(char val) {
        return val == ‘+‘ || val == ‘-‘ || val == ‘*‘ || val == ‘/‘;
    }
    //计算方法
    public int cal(int num1, int num2, int oper) {
        int res = 0; // res 用于存放计算的结果
        switch (oper) {
        case ‘+‘:
            res = num1 + num2;
            break;
        case ‘-‘:
            res = num2 - num1;// 注意顺序
            break;
        case ‘*‘:
            res = num1 * num2;
            break;
        case ‘/‘:
            res = num2 / num1;
            break;
        default:
            break;
        }
        return res;
    }
}

技术分享图片
public class Calculator {

    public static void main(String[] args) {
        //根据前面老师思路,完成表达式的运算
        String expression = "7*2*2-5+1-5+3-4"; // 15//如何处理多位数的问题?
        //创建两个栈,数栈,一个符号栈
        ArrayStack2 numStack = new ArrayStack2(10);
        ArrayStack2 operStack = new ArrayStack2(10);
        //定义需要的相关变量
        int index = 0;//用于扫描
        int num1 = 0; 
        int num2 = 0;
        int oper = 0;
        int res = 0;
        char ch = ‘ ‘; //将每次扫描得到char保存到ch
        String keepNum = ""; //用于拼接 多位数
        //开始while循环的扫描expression
        while(true) {
            //依次得到expression 的每一个字符
            ch = expression.substring(index, index+1).charAt(0);
            //判断ch是什么,然后做相应的处理
            if(operStack.isOper(ch)) {//如果是运算符
                //判断当前的符号栈是否为空
                if(!operStack.isEmpty()) {
                    //如果符号栈有操作符,就进行比较,如果当前的操作符的优先级小于或者等于栈中的操作符,就需要从数栈中pop出两个数,
                    //在从符号栈中pop出一个符号,进行运算,将得到结果,入数栈,然后将当前的操作符入符号栈
                    if(operStack.priority(ch) <= operStack.priority(operStack.peek())) {
                        num1 = numStack.pop();
                        num2 = numStack.pop();
                        oper = operStack.pop();
                        res = numStack.cal(num1, num2, oper);
                        //把运算的结果如数栈
                        numStack.push(res);
                        //然后将当前的操作符入符号栈
                        operStack.push(ch);
                    } else {
                        //如果当前的操作符的优先级大于栈中的操作符, 就直接入符号栈.
                        operStack.push(ch);
                    }
                }else {
                    //如果为空直接入符号栈..
                    operStack.push(ch); // 1 + 3
                }
            } else { //如果是数,则直接入数栈
                
                //numStack.push(ch - 48); //? "1+3" ‘1‘ => 1
                //分析思路
                //1. 当处理多位数时,不能发现是一个数就立即入栈,因为他可能是多位数
                //2. 在处理数,需要向expression的表达式的index 后再看一位,如果是数就进行扫描,如果是符号才入栈
                //3. 因此我们需要定义一个变量 字符串,用于拼接
                
                //处理多位数
                keepNum += ch;
                
                //如果ch已经是expression的最后一位,就直接入栈
                if (index == expression.length() - 1) {
                    numStack.push(Integer.parseInt(keepNum));
                }else{
                
                    //判断下一个字符是不是数字,如果是数字,就继续扫描,如果是运算符,则入栈
                    //注意是看后一位,不是index++
                    if (operStack.isOper(expression.substring(index+1,index+2).charAt(0))) {
                        //如果后一位是运算符,则入栈 keepNum = "1" 或者 "123"
                        numStack.push(Integer.parseInt(keepNum));
                        //重要的!!!!!!, keepNum清空
                        keepNum = "";
                        
                    }
                }
            }
            //让index + 1, 并判断是否扫描到expression最后.
            index++;
            if (index >= expression.length()) {
                break;
            }
        }
        
        //当表达式扫描完毕,就顺序的从 数栈和符号栈中pop出相应的数和符号,并运行.
        while(true) {
            //如果符号栈为空,则计算到最后的结果, 数栈中只有一个数字【结果】
            if(operStack.isEmpty()) {
                break;
            }
            num1 = numStack.pop();
            num2 = numStack.pop();
            oper = operStack.pop();
            res = numStack.cal(num1, num2, oper);
            numStack.push(res);//入栈
        }
        //将数栈的最后数,pop出,就是结果
        int res2 = numStack.pop();
        System.out.printf("表达式 %s = %d", expression, res2);
    }

}

//先创建一个栈,直接使用前面创建好
//定义一个 ArrayStack2 表示栈, 需要扩展功能
class ArrayStack2 {
    private int maxSize; // 栈的大小
    private int[] stack; // 数组,数组模拟栈,数据就放在该数组
    private int top = -1;// top表示栈顶,初始化为-1
    
    //构造器
    public ArrayStack2(int maxSize) {
        this.maxSize = maxSize;
        stack = new int[this.maxSize];
    }
    
    //增加一个方法,可以返回当前栈顶的值, 但是不是真正的pop
    public int peek() {
        return stack[top];
    }
    
    //栈满
    public boolean isFull() {
        return top == maxSize - 1;
    }
    //栈空
    public boolean isEmpty() {
        return top == -1;
    }
    //入栈-push
    public void push(int value) {
        //先判断栈是否满
        if(isFull()) {
            System.out.println("栈满");
            return;
        }
        top++;
        stack[top] = value;
    }
    //出栈-pop, 将栈顶的数据返回
    public int pop() {
        //先判断栈是否空
        if(isEmpty()) {
            //抛出异常
            throw new RuntimeException("栈空,没有数据~");
        }
        int value = stack[top];
        top--;
        return value;
    }
    //显示栈的情况[遍历栈], 遍历时,需要从栈顶开始显示数据
    public void list() {
        if(isEmpty()) {
            System.out.println("栈空,没有数据~~");
            return;
        }
        //需要从栈顶开始显示数据
        for(int i = top; i >= 0 ; i--) {
            System.out.printf("stack[%d]=%d\n", i, stack[i]);
        }
    }
    //返回运算符的优先级,优先级是程序员来确定, 优先级使用数字表示
    //数字越大,则优先级就越高.
    public int priority(int oper) {
        if(oper == ‘*‘ || oper == ‘/‘){
            return 1;
        } else if (oper == ‘+‘ || oper == ‘-‘) {
            return 0;
        } else {
            return -1; // 假定目前的表达式只有 +, - , * , /
        }
    }
    //判断是不是一个运算符
    public boolean isOper(char val) {
        return val == ‘+‘ || val == ‘-‘ || val == ‘*‘ || val == ‘/‘;
    }
    //计算方法
    public int cal(int num1, int num2, int oper) {
        int res = 0; // res 用于存放计算的结果
        switch (oper) {
        case ‘+‘:
            res = num1 + num2;
            break;
        case ‘-‘:
            res = num2 - num1;// 注意顺序
            break;
        case ‘*‘:
            res = num1 * num2;
            break;
        case ‘/‘:
            res = num2 / num1;
            break;
        default:
            break;
        }
        return res;
    }
}
技术分享图片

 7.栈实现后缀表达式(逆波兰)计算器

中缀表达式的求值是我们人最熟悉的,但是对计算机来说却不好操作,因此,在计算结果时,往往会将中缀表达式转成其它表达式来操作(一般转成后缀表达式)

后缀表达式又称逆波兰表达式,与前缀表达式相似,只是运算符位于操作数之后,举例说明: (3+4)×5-6 对应的后缀表达式就是 3 4 + 5 × 6 –

再比如:

技术分享图片

1)后缀表达式的计算机求值

从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素 和 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果

例如: (3+4)×5-6 对应的后缀表达式就是 3 4 + 5 × 6 - , 针对后缀表达式求值步骤如下:

(1) 从左至右扫描,将3和4压入堆栈;

(2) 遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;

(3) 将5入栈;

(4) 接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;

(5) 将6入栈;

(6) 最后是-运算符,计算出35-6的值,即29,由此得出最终结果

代码实现

技术分享图片
//完成对逆波兰表达式的运算
/*
 * 1)从左至右扫描,将3和4压入堆栈;
    2)遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;
    3)将5入栈;
    4)接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
    5)将6入栈;
    6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果
 */
public static int calculate(List<String> ls) {
    // 创建给栈, 只需要一个栈即可
    Stack<String> stack = new Stack<String>();
    // 遍历 ls
    for (String item : ls) {
        // 这里使用正则表达式来取出数
        if (item.matches("\\d+")) { // 匹配的是多位数
            // 入栈
            stack.push(item);
        } else {
            // pop出两个数,并运算, 再入栈
            int num2 = Integer.parseInt(stack.pop());
            int num1 = Integer.parseInt(stack.pop());
            int res = 0;
            if (item.equals("+")) {
                res = num1 + num2;
            } else if (item.equals("-")) {
                res = num1 - num2;
            } else if (item.equals("*")) {
                res = num1 * num2;
            } else if (item.equals("/")) {
                res = num1 / num2;
            } else {
                throw new RuntimeException("运算符有误");
            }
            //把res 入栈
            stack.push("" + res);
        }
    }
    //最后留在stack中的数据是运算结果
    return Integer.parseInt(stack.pop());
}
技术分享图片

2)中缀表达式转后缀表达式

具体步骤如下:

(1) 初始化两个栈:运算符栈s1和储存中间结果的栈s2;

(2) 从左至右扫描中缀表达式;

(3) 遇到操作数时,将其压s2;

(4) 遇到运算符时,比较其与s1栈顶运算符的优先级:

(4-1) 如果s1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;

(4-2) 否则,若优先级比栈顶运算符的高,也将运算符压入s1;

(4-3) 否则,将s1栈顶的运算符弹出并压入到s2中,再次转到(4-1)与s1中新的栈顶运算符相比较;

(5) 遇到括号时:

(5-1) 如果是左括号“(”,则直接压入s1

(5-2) 如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃

(6)重复步骤2至5,直到表达式的最右边

(7)将s1中剩余的运算符依次弹出并压入s2

(8)依次弹出s2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式

举例说明:将中缀表达式“1+((2+3)×4)-5”转换为后缀表达式的过程如下:

技术分享图片

代码实现:

import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

public class PolandNotation {

    public static void main(String[] args) {
        
        
        //完成将一个中缀表达式转成后缀表达式的功能
        //说明
        //1. 1+((2+3)×4)-5 => 转成  1 2 3 + 4 × + 5 –
        //2. 因为直接对str 进行操作,不方便,因此 先将  "1+((2+3)×4)-5" =》 中缀的表达式对应的List
        //   即 "1+((2+3)×4)-5" => ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
        //3. 将得到的中缀表达式对应的List => 后缀表达式对应的List
        //   即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]  =》 ArrayList [1,2,3,+,4,*,+,5,–]
        
        String expression = "1+((2+3)*4)-5";//注意表达式 
        List<String> infixExpressionList = toInfixExpressionList(expression);
        System.out.println("中缀表达式对应的List=" + infixExpressionList); // ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
        List<String> suffixExpreesionList = parseSuffixExpreesionList(infixExpressionList);
        System.out.println("后缀表达式对应的List" + suffixExpreesionList); //ArrayList [1,2,3,+,4,*,+,5,–] 
        
        System.out.printf("expression=%d", calculate(suffixExpreesionList)); // ?
        
        /*
        
        //先定义给逆波兰表达式
        //(30+4)×5-6  => 30 4 + 5 × 6 - => 164
        // 4 * 5 - 8 + 60 + 8 / 2 => 4 5 * 8 - 60 + 8 2 / + 
        //测试 
        //说明为了方便,逆波兰表达式 的数字和符号使用空格隔开
        //String suffixExpression = "30 4 + 5 * 6 -";
        String suffixExpression = "4 5 * 8 - 60 + 8 2 / +"; // 76
        //思路
        //1. 先将 "3 4 + 5 × 6 - " => 放到ArrayList中
        //2. 将 ArrayList 传递给一个方法,遍历 ArrayList 配合栈 完成计算
        
        List<String> list = getListString(suffixExpression);
        System.out.println("rpnList=" + list);
        int res = calculate(list);
        System.out.println("计算的结果是=" + res);
        
        */
    }
    
    //即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]  =》 ArrayList [1,2,3,+,4,*,+,5,–]
    //方法:将得到的中缀表达式对应的List => 后缀表达式对应的List
    public static List<String> parseSuffixExpreesionList(List<String> ls) {
        //定义两个栈
        Stack<String> s1 = new Stack<String>(); // 符号栈
        //说明:因为s2 这个栈,在整个转换过程中,没有pop操作,而且后面我们还需要逆序输出
        //因此比较麻烦,这里我们就不用 Stack<String> 直接使用 List<String> s2
        //Stack<String> s2 = new Stack<String>(); // 储存中间结果的栈s2
        List<String> s2 = new ArrayList<String>(); // 储存中间结果的Lists2
        
        //遍历ls
        for(String item: ls) {
            //如果是一个数,加入s2
            if(item.matches("\\d+")) {
                s2.add(item);
            } else if (item.equals("(")) {
                s1.push(item);
            } else if (item.equals(")")) {
                //如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
                while(!s1.peek().equals("(")) {
                    s2.add(s1.pop());
                }
                s1.pop();//!!! 将 ( 弹出 s1栈, 消除小括号
            } else {
                //当item的优先级小于等于s1栈顶运算符, 将s1栈顶的运算符弹出并加入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较
                //问题:我们缺少一个比较优先级高低的方法
                while(s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item) ) {
                    s2.add(s1.pop());
                }
                //还需要将item压入栈
                s1.push(item);
            }
        }
        
        //将s1中剩余的运算符依次弹出并加入s2
        while(s1.size() != 0) {
            s2.add(s1.pop());
        }

        return s2; //注意因为是存放到List, 因此按顺序输出就是对应的后缀表达式对应的List
        
    }
    
    //方法:将 中缀表达式转成对应的List
    //  s="1+((2+3)×4)-5";
    public static List<String> toInfixExpressionList(String s) {
        //定义一个List,存放中缀表达式 对应的内容
        List<String> ls = new ArrayList<String>();
        int i = 0; //这时是一个指针,用于遍历 中缀表达式字符串
        String str; // 对多位数的拼接
        char c; // 每遍历到一个字符,就放入到c
        do {
            //如果c是一个非数字,我需要加入到ls
            if((c=s.charAt(i)) < 48 ||  (c=s.charAt(i)) > 57) {
                ls.add("" + c);
                i++; //i需要后移
            } else { //如果是一个数,需要考虑多位数
                str = ""; //先将str 置成"" ‘0‘[48]->‘9‘[57]
                while(i < s.length() && (c=s.charAt(i)) >= 48 && (c=s.charAt(i)) <= 57) {
                    str += c;//拼接
                    i++;
                }
                ls.add(str);
            }
        }while(i < s.length());
        return ls;//返回
    }
    
    //将一个逆波兰表达式, 依次将数据和运算符 放入到 ArrayList中
    public static List<String> getListString(String suffixExpression) {
        //将 suffixExpression 分割
        String[] split = suffixExpression.split(" ");
        List<String> list = new ArrayList<String>();
        for(String ele: split) {
            list.add(ele);
        }
        return list;
        
    }
    
    //完成对逆波兰表达式的运算
    /*
     * 1)从左至右扫描,将3和4压入堆栈;
        2)遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;
        3)将5入栈;
        4)接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
        5)将6入栈;
        6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果
     */

    public static int calculate(List<String> ls) {
        // 创建给栈, 只需要一个栈即可
        Stack<String> stack = new Stack<String>();
        // 遍历 ls
        for (String item : ls) {
            // 这里使用正则表达式来取出数
            if (item.matches("\\d+")) { // 匹配的是多位数
                // 入栈
                stack.push(item);
            } else {
                // pop出两个数,并运算, 再入栈
                int num2 = Integer.parseInt(stack.pop());
                int num1 = Integer.parseInt(stack.pop());
                int res = 0;
                if (item.equals("+")) {
                    res = num1 + num2;
                } else if (item.equals("-")) {
                    res = num1 - num2;
                } else if (item.equals("*")) {
                    res = num1 * num2;
                } else if (item.equals("/")) {
                    res = num1 / num2;
                } else {
                    throw new RuntimeException("运算符有误");
                }
                //把res 入栈
                stack.push("" + res);
            }
            
        }
        //最后留在stack中的数据是运算结果
        return Integer.parseInt(stack.pop());
    }
}

//编写一个类 Operation 可以返回一个运算符 对应的优先级
class Operation {
    private static int ADD = 1;
    private static int SUB = 1;
    private static int MUL = 2;
    private static int DIV = 2;
    
    //写一个方法,返回对应的优先级数字
    public static int getValue(String operation) {
        int result = 0;
        switch (operation) {
        case "+":
            result = ADD;
            break;
        case "-":
            result = SUB;
            break;
        case "*":
            result = MUL;
            break;
        case "/":
            result = DIV;
            break;
        default:
            System.out.println("不存在该运算符" + operation);
            break;
        }
        return result;
    }
}

技术分享图片
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

public class PolandNotation {

    public static void main(String[] args) {
        
        
        //完成将一个中缀表达式转成后缀表达式的功能
        //说明
        //1. 1+((2+3)×4)-5 => 转成  1 2 3 + 4 × + 5 –
        //2. 因为直接对str 进行操作,不方便,因此 先将  "1+((2+3)×4)-5" =》 中缀的表达式对应的List
        //   即 "1+((2+3)×4)-5" => ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
        //3. 将得到的中缀表达式对应的List => 后缀表达式对应的List
        //   即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]  =》 ArrayList [1,2,3,+,4,*,+,5,–]
        
        String expression = "1+((2+3)*4)-5";//注意表达式 
        List<String> infixExpressionList = toInfixExpressionList(expression);
        System.out.println("中缀表达式对应的List=" + infixExpressionList); // ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
        List<String> suffixExpreesionList = parseSuffixExpreesionList(infixExpressionList);
        System.out.println("后缀表达式对应的List" + suffixExpreesionList); //ArrayList [1,2,3,+,4,*,+,5,–] 
        
        System.out.printf("expression=%d", calculate(suffixExpreesionList)); // ?
        
        /*
        
        //先定义给逆波兰表达式
        //(30+4)×5-6  => 30 4 + 5 × 6 - => 164
        // 4 * 5 - 8 + 60 + 8 / 2 => 4 5 * 8 - 60 + 8 2 / + 
        //测试 
        //说明为了方便,逆波兰表达式 的数字和符号使用空格隔开
        //String suffixExpression = "30 4 + 5 * 6 -";
        String suffixExpression = "4 5 * 8 - 60 + 8 2 / +"; // 76
        //思路
        //1. 先将 "3 4 + 5 × 6 - " => 放到ArrayList中
        //2. 将 ArrayList 传递给一个方法,遍历 ArrayList 配合栈 完成计算
        
        List<String> list = getListString(suffixExpression);
        System.out.println("rpnList=" + list);
        int res = calculate(list);
        System.out.println("计算的结果是=" + res);
        
        */
    }
    
    //即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]  =》 ArrayList [1,2,3,+,4,*,+,5,–]
    //方法:将得到的中缀表达式对应的List => 后缀表达式对应的List
    public static List<String> parseSuffixExpreesionList(List<String> ls) {
        //定义两个栈
        Stack<String> s1 = new Stack<String>(); // 符号栈
        //说明:因为s2 这个栈,在整个转换过程中,没有pop操作,而且后面我们还需要逆序输出
        //因此比较麻烦,这里我们就不用 Stack<String> 直接使用 List<String> s2
        //Stack<String> s2 = new Stack<String>(); // 储存中间结果的栈s2
        List<String> s2 = new ArrayList<String>(); // 储存中间结果的Lists2
        
        //遍历ls
        for(String item: ls) {
            //如果是一个数,加入s2
            if(item.matches("\\d+")) {
                s2.add(item);
            } else if (item.equals("(")) {
                s1.push(item);
            } else if (item.equals(")")) {
                //如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
                while(!s1.peek().equals("(")) {
                    s2.add(s1.pop());
                }
                s1.pop();//!!! 将 ( 弹出 s1栈, 消除小括号
            } else {
                //当item的优先级小于等于s1栈顶运算符, 将s1栈顶的运算符弹出并加入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较
                //问题:我们缺少一个比较优先级高低的方法
                while(s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item) ) {
                    s2.add(s1.pop());
                }
                //还需要将item压入栈
                s1.push(item);
            }
        }
        
        //将s1中剩余的运算符依次弹出并加入s2
        while(s1.size() != 0) {
            s2.add(s1.pop());
        }

        return s2; //注意因为是存放到List, 因此按顺序输出就是对应的后缀表达式对应的List
        
    }
    
    //方法:将 中缀表达式转成对应的List
    //  s="1+((2+3)×4)-5";
    public static List<String> toInfixExpressionList(String s) {
        //定义一个List,存放中缀表达式 对应的内容
        List<String> ls = new ArrayList<String>();
        int i = 0; //这时是一个指针,用于遍历 中缀表达式字符串
        String str; // 对多位数的拼接
        char c; // 每遍历到一个字符,就放入到c
        do {
            //如果c是一个非数字,我需要加入到ls
            if((c=s.charAt(i)) < 48 ||  (c=s.charAt(i)) > 57) {
                ls.add("" + c);
                i++; //i需要后移
            } else { //如果是一个数,需要考虑多位数
                str = ""; //先将str 置成"" ‘0‘[48]->‘9‘[57]
                while(i < s.length() && (c=s.charAt(i)) >= 48 && (c=s.charAt(i)) <= 57) {
                    str += c;//拼接
                    i++;
                }
                ls.add(str);
            }
        }while(i < s.length());
        return ls;//返回
    }
    
    //将一个逆波兰表达式, 依次将数据和运算符 放入到 ArrayList中
    public static List<String> getListString(String suffixExpression) {
        //将 suffixExpression 分割
        String[] split = suffixExpression.split(" ");
        List<String> list = new ArrayList<String>();
        for(String ele: split) {
            list.add(ele);
        }
        return list;
        
    }
    
    //完成对逆波兰表达式的运算
    /*
     * 1)从左至右扫描,将3和4压入堆栈;
        2)遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;
        3)将5入栈;
        4)接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
        5)将6入栈;
        6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果
     */

    public static int calculate(List<String> ls) {
        // 创建给栈, 只需要一个栈即可
        Stack<String> stack = new Stack<String>();
        // 遍历 ls
        for (String item : ls) {
            // 这里使用正则表达式来取出数
            if (item.matches("\\d+")) { // 匹配的是多位数
                // 入栈
                stack.push(item);
            } else {
                // pop出两个数,并运算, 再入栈
                int num2 = Integer.parseInt(stack.pop());
                int num1 = Integer.parseInt(stack.pop());
                int res = 0;
                if (item.equals("+")) {
                    res = num1 + num2;
                } else if (item.equals("-")) {
                    res = num1 - num2;
                } else if (item.equals("*")) {
                    res = num1 * num2;
                } else if (item.equals("/")) {
                    res = num1 / num2;
                } else {
                    throw new RuntimeException("运算符有误");
                }
                //把res 入栈
                stack.push("" + res);
            }
            
        }
        //最后留在stack中的数据是运算结果
        return Integer.parseInt(stack.pop());
    }
}

//编写一个类 Operation 可以返回一个运算符 对应的优先级
class Operation {
    private static int ADD = 1;
    private static int SUB = 1;
    private static int MUL = 2;
    private static int DIV = 2;
    
    //写一个方法,返回对应的优先级数字
    public static int getValue(String operation) {
        int result = 0;
        switch (operation) {
        case "+":
            result = ADD;
            break;
        case "-":
            result = SUB;
            break;
        case "*":
            result = MUL;
            break;
        case "/":
            result = DIV;
            break;
        default:
            System.out.println("不存在该运算符" + operation);
            break;
        }
        return result;
    }
}
技术分享图片

 

 

 

 

 

 

 

 

 

一、简介

栈(英语:stack)又称为堆栈或堆叠,栈作为一种数据结构,是一种只能在一端进行插入和删除操作的特殊线性表。它按照先进后出的原则存储数据,先进入的数据被压入栈底(Bottom),最后的数据在栈顶(Top)。我们把插入元素的操作称为入栈(Push),删除元素的操作称为出栈(Pop)。

由于堆叠数据结构只允许在一端进行操作,因而按照后进先出(LIFO, Last In First Out)的原理运作。栈也称为后进先出表。

这里以羽毛球筒为例,羽毛球筒就是一个栈,刚开始羽毛球筒是空的,也就是空栈,然后我们一个一个放入羽毛球,也就是一个一个push进栈,当我们需要使用羽毛球的时候,从筒里面拿,也就是pop出栈,但是第一个拿到的羽毛球是我们最后放进去的。

栈的结构如下图: 

技术分享图片

二、Java模拟简单的顺序栈实现

技术分享图片

技术分享图片
package com.ys.datastructure;
 
public class MyStack {
    private int[] array;
    private int maxSize;
    private int top;
     
    public MyStack(int size){
        this.maxSize = size;
        array = new int[size];
        top = -1;
    }
     
    //压入数据
    public void push(int value){
        if(top < maxSize-1){
            array[++top] = value;
        }
    }
     
    //弹出栈顶数据
    public int pop(){
        return array[top--];
    }
     
    //访问栈顶数据
    public int peek(){
        return array[top];
    }
     
    //判断栈是否为空
    public boolean isEmpty(){
        return (top == -1);
    }
     
    //判断栈是否满了
    public boolean isFull(){
        return (top == maxSize-1);
    }
     
 
}
技术分享图片

测试:

技术分享图片
package com.ys.test;
 
import com.ys.datastructure.MyStack;
 
public class MyStackTest {
    public static void main(String[] args) {
        MyStack stack = new MyStack(3);
        stack.push(1);
        stack.push(2);
        stack.push(3);
        System.out.println(stack.peek());
        while(!stack.isEmpty()){
            System.out.println(stack.pop());
        }
         
    }
 
}
技术分享图片

结果:

  技术分享图片

这个栈是用数组实现的,内部定义了一个数组,一个表示最大容量的值以及一个指向栈顶元素的top变量。构造方法根据参数规定的容量创建一个新栈,push()方法是向栈中压入元素,指向栈顶的变量top加一,使它指向原顶端数据项上面的一个位置,并在这个位置上存储一个数据。pop()方法返回top变量指向的元素,然后将top变量减一,便移除了数据项。要知道 top 变量指向的始终是栈顶的元素。

产生的问题:

  ①、上面栈的实现初始化容量之后,后面是不能进行扩容的(虽然栈不是用来存储大量数据的),如果说后期数据量超过初始容量之后怎么办?(自动扩容)

  ②、我们是用数组实现栈,在定义数组类型的时候,也就规定了存储在栈中的数据类型,那么同一个栈能不能存储不同类型的数据呢?(声明为Object)

  ③、栈需要初始化容量,而且数组实现的栈元素都是连续存储的,那么能不能不初始化容量呢?(改为由链表实现)

三、增强功能版栈

对于上面出现的问题,第一个能自动扩容,第二个能存储各种不同类型的数据,解决办法如下:(第三个在讲链表的时候在介绍)

  这个模拟的栈在JDK源码中,大家可以参考 Stack 类的实现。

  技术分享图片

 

技术分享图片
package com.ys.datastructure;
 
import java.util.Arrays;
import java.util.EmptyStackException;
 
public class ArrayStack {
    //存储元素的数组,声明为Object类型能存储任意类型的数据
    private Object[] elementData;
    //指向栈顶的指针
    private int top;
    //栈的总容量
    private int size;
     
     
    //默认构造一个容量为10的栈
    public ArrayStack(){
        this.elementData = new Object[10];
        this.top = -1;
        this.size = 10;
    }
     
    public ArrayStack(int initialCapacity){
        if(initialCapacity < 0){
            throw new IllegalArgumentException("栈初始容量不能小于0: "+initialCapacity);
        }
        this.elementData = new Object[initialCapacity];
        this.top = -1;
        this.size = initialCapacity;
    }
     
     
    //压入元素
    public Object push(Object item){
        //是否需要扩容
        isGrow(top+1);
        elementData[++top] = item;
        return item;
    }
     
    //弹出栈顶元素
    public Object pop(){
        Object obj = peek();
        remove(top);
        return obj;
    }
     
    //获取栈顶元素
    public Object peek(){
        if(top == -1){
            throw new EmptyStackException();
        }
        return elementData[top];
    }
    //判断栈是否为空
    public boolean isEmpty(){
        return (top == -1);
    }
     
    //删除栈顶元素
    public void remove(int top){
        //栈顶元素置为null
        elementData[top] = null;
        this.top--;
    }
     
    /**
     * 是否需要扩容,如果需要,则扩大一倍并返回true,不需要则返回false
     * @param minCapacity
     * @return
     */
    public boolean isGrow(int minCapacity){
        int oldCapacity = size;
        //如果当前元素压入栈之后总容量大于前面定义的容量,则需要扩容
        if(minCapacity >= oldCapacity){
            //定义扩大之后栈的总容量
            int newCapacity = 0;
            //栈容量扩大两倍(左移一位)看是否超过int类型所表示的最大范围
            if((oldCapacity<<1) - Integer.MAX_VALUE >0){
                newCapacity = Integer.MAX_VALUE;
            }else{
                newCapacity = (oldCapacity<<1);//左移一位,相当于*2
            }
            this.size = newCapacity;
            int[] newArray = new int[size];
            elementData = Arrays.copyOf(elementData, size);
            return true;
        }else{
            return false;
        }
    }
}
技术分享图片

测试:

技术分享图片
//测试自定义栈类 ArrayStack
//创建容量为3的栈,然后添加4个元素,3个int,1个String.
@Test
public void testArrayStack(){
    ArrayStack stack = new ArrayStack(3);
    stack.push(1);
    //System.out.println(stack.peek());
    stack.push(2);
    stack.push(3);
    stack.push("abc");
    System.out.println(stack.peek());
    stack.pop();
    stack.pop();
    stack.pop();
    System.out.println(stack.peek());
}
技术分享图片

结果:

  技术分享图片

四、利用栈实现字符串逆序

我们知道栈是后进先出,我们可以将一个字符串分隔为单个的字符,然后将字符一个一个push()进栈,在一个一个pop()出栈就是逆序显示了。如下:

将 字符串“how are you” 反转!!!

这里我们是用上面自定的栈来实现的,大家可以将ArrayStack替换为JDK自带的栈类Stack试试

技术分享图片
//进行字符串反转
@Test
public void testStringReversal(){
    ArrayStack stack = new ArrayStack();
    String str = "how are you";
    char[] cha = str.toCharArray();
    for(char c : cha){
        stack.push(c);
    }
    while(!stack.isEmpty()){
        System.out.print(stack.pop());
    }
}
技术分享图片

结果:

  技术分享图片

五、利用栈判断分隔符是否匹配

写过xml标签或者html标签的,我们都知道<必须和最近的>进行匹配,[ 也必须和最近的 ] 进行匹配。

比如:<abc[123]abc>这是符号相匹配的,如果是 <abc[123>abc] 那就是不匹配的。

对于 12<a[b{c}]>,我们分析在栈中的数据:遇到匹配正确的就消除

  技术分享图片

  最后栈中的内容为空则匹配成功,否则匹配失败!!!

技术分享图片
//分隔符匹配
//遇到左边分隔符了就push进栈,遇到右边分隔符了就pop出栈,看出栈的分隔符是否和这个有分隔符匹配
@Test
public void testMatch(){
    ArrayStack stack = new ArrayStack(3);
    String str = "12<a[b{c}]>";
    char[] cha = str.toCharArray();
    for(char c : cha){
        switch (c) {
        case ‘{‘:
        case ‘[‘:
        case ‘<‘:
            stack.push(c);
            break;
        case ‘}‘:
        case ‘]‘:
        case ‘>‘:
            if(!stack.isEmpty()){
                char ch = stack.pop().toString().toCharArray()[0];
                if(c==‘}‘ && ch != ‘{‘
                    || c==‘]‘ && ch != ‘[‘
                    || c==‘)‘ && ch != ‘(‘){
                    System.out.println("Error:"+ch+"-"+c);
                }
            }
            break;
        default:
            break;
        }
    }
}
技术分享图片

六、总结

根据栈后进先出的特性,我们实现了单词逆序以及分隔符匹配。所以其实栈是一个概念上的工具,具体能实现什么功能可以由我们去想象。栈通过提供限制性的访问方法push()和pop(),使得程序不容易出错。

对于栈的实现,我们稍微分析就知道,数据入栈和出栈的时间复杂度都为O(1),也就是说栈操作所耗的时间不依赖栈中数据项的个数,因此操作时间很短。而且需要注意的是栈不需要比较和移动操作,我们不要画蛇添足。  

七、扩展

1、可查询最值的栈练习题

定义栈的数据结构,请在该类型中实现一个能够得到栈最小元素的min函数。

实现一个特殊的栈,再实现栈的基本功能的基础上,再实现返回栈中最小元素的操作getmin。

要求:

①pop、push、getmin的时间复杂度为O(1)。

②设计的栈类型可以使用现有的栈结构。

方法1

技术分享图片

方法2

技术分享图片

区别

1.方法1和方法2都是利用StackMin来保存每一步的最小值。

2.方法1和方法2的实现时间复杂度都是O(1)。

3.区别在于方法1稍省空间,略费时间,方法2则相反。

 

技术分享图片
import java.util.Stack;
public class Solution {
    private Stack<Integer> stackData = new Stack<>();
    private Stack<Integer> stackMin = new Stack<>();
    public void push(int node) {
        //将当前元素压入栈
        stackData.push(node);
        /**
         * 如果最小栈为空,那么直接压入
         * 否则如果当前元素小于stackMin的顶部元素,直接压入,大于就继续压入stackMin的顶部元素
         */
        if(stackMin.isEmpty()){
            stackMin.push(node);
        } else {
            if (node < stackMin.peek().intValue()) {
                stackMin.push(node);
            }
            else{
                stackMin.push(stackMin.peek());
            }
        }
    }
    public void pop() {
        stackData.pop();
        stackMin.pop();
    }
    public int top() {
        return stackData.peek();
    }
    public int min() {
        return stackMin.peek();
    }
}
技术分享图片

 2、栈的反转练习题

实现一个栈的逆序,但是只能用递归函数和这个栈本身的pop操作来实现,而不能自己申请另外的数据结构。

给定一个整数数组A即为给定的栈,同时给定它的大小n,请返回逆序后的栈。

测试样例: 

[4,3,2,1],4 

返回:

[1,2,3,4]

技术分享图片
// 思路:每次下标和上标的数据对调,然后各自指针向中间移动一位,递归调用,直到上指标小于stack大小的一半结束
    public static Stack<Integer> reverseStack(Stack<Integer> stack,int n){
        if (stack != null && !stack.isEmpty()) {
            int size = stack.size();
            int bottomindex = size-n;
            int topindex = n-1;
            int bottomdata = stack.get(bottomindex);
            int topdata = stack.get(topindex);
            int temp = bottomdata;
            bottomdata = topdata;
            topdata = temp;
            stack.set(bottomindex, bottomdata);
            stack.set(topindex, topdata);
            
            n--;
            if (n>(size/2)) {
                reverseStack(stack, n);
            }
        }
        return stack;
    }
技术分享图片

3、双栈排序练习题

请编写一个程序,按升序对栈进行排序(即最大元素位于栈顶),要求最多只能使用一个额外的栈存放临时数据,但不得将元素复制到别的数据结构中。

给定一个int[] numbers(C++中为vector&ltint>),其中第一个元素为栈顶,请返回排序后的栈。请注意这是一个栈,意味着排序过程中你只能访问到第一个元素。

测试样例:
[1,2,3,4,5]
返回:[5,4,3,2,1]

技术分享图片
public class TwoStacks {
    public ArrayList<Integer> twoStacksSort(int[] numbers) {
        // write code here
        int len = numbers.length;
        int[] help = new int[len];
        int n = len - 1;
        int m = -1;
        while(n >= 0){
            int key = numbers[n--];
            if(m == -1){
                help[++m] = key;
            }else{
                if(help[m] > key){
                    help[++m] = key;
                    }else{
                        int k = m;
                    while(k>=0 && help[k]<=key){
                        help[k+1] = help[k];
                        k --;
                    }
                    help[k+1] = key;
                    m++;
                }
            }
        }
        ArrayList<Integer> list = new ArrayList<Integer>();
        for(int i = 0; i < help.length; i++){
            list.add(help[i]);
        }
        return list;
    }
}
技术分享图片

 

 

 

 

 

 

数据结构和算法-栈

原文:https://www.cnblogs.com/xuwc/p/13904727.html

(0)
(0)
   
举报
评论 一句话评论(0
分享档案
最新文章
教程昨日排行
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!