还是那句话,学习某个知识一定要想想为什么要学它,这方面的知识用来解决什么问题的,怎么用,并且要总结的体系化,不能散的到处都是,方便以后查看博客。
今天参考廖雪峰老师官网学习并总结下泛型廖老师官网
在讲解什么是泛型之前,我们先观察Java标准库提供的ArrayList,它可以看作“可变长度”的数组,因为用起来比数组更方便。
实际上ArrayList内部就是一个Object[]数组,配合存储一个当前分配的长度,就可以充当“可变数组”:
public class ArrayList {
private Object[] array;
private int size;
public void add(Object e) {...}
public void remove(int index) {...}
public Object get(int index) {...}
}
如果用上述ArrayList存储String类型,会有这么几个缺点:
取出时需要强制转型(如(String),这样写);
不方便,易出错。
例如,代码必须这么写:
ArrayList list = new ArrayList();
list.add("Hello");
// 获取到Object,必须强制转型为String:
String first = (String) list.get(0);
很容易出现ClassCastException,因为容易“误转型”:
list.add(new Integer(123));
// ERROR: ClassCastException:
String second = (String) list.get(1);
要解决上述问题,我们可以为String单独编写一种ArrayList:
public class StringArrayList {
private String[] array;
private int size;
public void add(String e) {...}
public void remove(int index) {...}
public String get(int index) {...}
}
这样一来,存入的必须是String,取出的也一定是String,不需要强制转型,因为编译器会强制检查放入的类型:
StringArrayList list = new StringArrayList();
list.add("Hello");
String first = list.get(0);
// 编译错误: 不允许放入非String类型:
list.add(new Integer(123));
问题暂时解决。
然而,新的问题是,如果要存储Integer,还需要为Integer单独编写一种ArrayList:
public class IntegerArrayList {
private Integer[] array;
private int size;
public void add(Integer e) {...}
public void remove(int index) {...}
public Integer get(int index) {...}
}
实际上,还需要为其他所有class单独编写一种ArrayList:
为了解决新的问题,我们必须把ArrayList变成一种模板:ArrayList
public class ArrayList<T> {
private T[] array;
private int size;
public void add(T e) {...}
public void remove(int index) {...}
public T get(int index) {...}
}
T可以是任何class。这样一来,我们就实现了:编写一次模版,可以创建任意类型的ArrayList:
// 创建可以存储String的ArrayList:
ArrayList<String> strList = new ArrayList<String>();
// 创建可以存储Float的ArrayList:
ArrayList<Float> floatList = new ArrayList<Float>();
// 创建可以存储Person的ArrayList:
ArrayList<Person> personList = new ArrayList<Person>();
因此,泛型就是定义一种模板,例如ArrayList
ArrayList<String> strList = new ArrayList<String>();
由编译器针对类型作检查:
strList.add("hello"); // OK
String s = strList.get(0); // OK
strList.add(new Integer(123)); // compile error!
Integer n = strList.get(0); // compile error!
这样一来,既实现了编写一次,万能匹配,又通过编译器保证了类型安全:这就是泛型。
在Java标准库中的ArrayList
public class ArrayList<T> implements List<T> {
...
}
List<String> list = new ArrayList<String>();
//List引用指向了ArrayList这个子类对象,故称为向上转型
即类型ArrayList
要特别注意:不能把ArrayList
这是为什么呢?假设ArrayList
// 创建ArrayList<Integer>类型:
ArrayList<Integer> integerList = new ArrayList<Integer>();
// 添加一个Integer:
integerList.add(new Integer(123));
// “向上转型”为ArrayList<Number>:
ArrayList<Number> numberList = integerList;
// 添加一个Float,因为Float也是Number:
numberList.add(new Float(12.34));
// 从ArrayList<Integer>获取索引为1的元素(即添加的Float):
Integer n = integerList.get(1); // ClassCastException!
我们把一个ArrayList
实际上,编译器为了避免这种错误,根本就不允许把ArrayList
ArrayList
同时思考下,廖老师并没有讲的向下转型,我想只要大家懂了向上转型。向下转型自然就理解了,也是不可以的。
泛型就是编写模板代码来适应任意类型;
泛型的好处是使用时不必对类型进行强制转换,它通过编译器对类型进行检查,将运行期的异常提前到了编译期,并避免了强制转换的出现,同时提高了代码的复用性;
注意泛型的继承关系:可以把ArrayList
再来一张图嘿嘿,黑马的,总结的不错也,定义更好,形参和实参方面去理解下再:
使用ArrayList时,如果不定义泛型类型时,泛型类型实际上就是Object,即你虽然支持写泛型,但是我就是不用现在:
// 编译器警告:
List list = new ArrayList();
list.add("Hello");
list.add("World");
String first = (String) list.get(0);
String second = (String) list.get(1);
此时,只能把
当我们定义泛型类型
// 无编译器警告:
List<String> list = new ArrayList<String>();
list.add("Hello");
list.add("World");
// 无强制转型:
String first = list.get(0);
String second = list.get(1);
当我们定义泛型类型
List<Number> list = new ArrayList<Number>();
list.add(new Integer(123));
list.add(new Double(12.34));
Number first = list.get(0);
Number second = list.get(1);
编译器如果能自动推断出泛型类型,就可以省略后面的泛型类型,jdk1.7以后就支持了。例如,对于下面的代码:
List<Number> list = new ArrayList<Number>();
编译器看到泛型类型List
// 可以省略后面的Number,编译器可以自动推断泛型类型:
List<Number> list = new ArrayList<>();
除了ArrayList
public interface Comparable<T> {
/**
* 返回负数: 当前实例比参数o小
* 返回0: 当前实例与参数o相等
* 返回正数: 当前实例比参数o大
*/
int compareTo(T o);
}
可以直接对String数组进行排序:
// sort
import java.util.Arrays;
public class Main {
public static void main(String[] args) {
String[] ss = new String[] { "Orange", "Apple", "Pear" };
Arrays.sort(ss);
System.out.println(Arrays.toString(ss));
}
}
运行结果:[Apple, Orange, Pear]
这是因为String本身已经实现了Comparable
// sort
import java.util.Arrays;
public class Main {
public static void main(String[] args) {
Person[] ps = new Person[] {
new Person("Bob", 61),
new Person("Alice", 88),
new Person("Lily", 75),
};
Arrays.sort(ps);
System.out.println(Arrays.toString(ps));
}
}
class Person {
String name;
int score;
Person(String name, int score) {
this.name = name;
this.score = score;
}
public String toString() {
return this.name + "," + this.score;
}
}
运行程序,我们会得到ClassCastException,即无法将Person转型为Comparable。我们修改代码,让Person实现Comparable
异常信息:Exception in thread "main" java.lang.ClassCastException: class Person cannot be cast to class java.lang.Comparable (Person is in unnamed module of loader com.sun.tools.javac.launcher.Main$MemoryClassLoader @52e677af;
// sort
import java.util.Arrays;
public class Main {
public static void main(String[] args) {
Person[] ps = new Person[] {
new Person("Bob", 61),
new Person("Alice", 88),
new Person("Lily", 75),
};
Arrays.sort(ps);
System.out.println(Arrays.toString(ps));
}
}
class Person implements Comparable<Person> {
String name;
int score;
Person(String name, int score) {
this.name = name;
this.score = score;
}
public int compareTo(Person other) {
return this.name.compareTo(other.name);
}
public String toString() {
return this.name + "," + this.score;
}
}
运行结果:[Alice,88, Bob,61, Lily,75]
运行上述代码,可以正确实现按name进行排序。
也可以修改比较逻辑,例如,按score从高到低排序。请自行修改测试。
使用泛型时,把泛型参数
可以省略编译器能自动推断出的类型,例如:List
不指定泛型参数类型时,编译器会给出警告,且只能将
可以在接口中定义泛型类型,实现此接口的类必须实现正确的泛型类型。
补充:如果对Java 中 Comparable 和 Comparator 还不太了解,可以看下此博客,写的很不错,Comparable 是针对单独一个类使其支持排序,Comparator为
原文:https://www.cnblogs.com/lovelywcc/p/13917383.html