又是一道(dl)题。考虑用最长路径树解决
先正反拓扑
正着跑出最长路径树,\(dis\)也就是树中的\(dep\)
反着跑出每个点到终点的最大距离rdis.
删去一个点x剩下的最长路径的终点有两种情况,在x的子树中和不在x的子树中。
直接用dfn序,区间维护最大的dis即可
对于一条非树边\((i,j)\),j在x子树中而i不在,对删去x后最长路径
贡献为\(dis[i]+rdis[y]+1\),我们将这样的边从大到小排序后,对于满足\((i,j)\)中j在x子树中而i不在的x,更新一遍即可,
用个并查集维护,\(fa[x]\)表示x及其父亲中第一个未更新的点
例如:非树边\((i,j)\),他们对会对\(j\)到\(lca(i,j)\)之间的点产生\(dis[i]+rdis[j]+1\) 的贡献,(如下图橙色的点)
(图片来自mikufun)
这样就求出了删去x后的图中的最长路径\(Ans[x]\),然后取\(Ans\)最小且尽量\(x\)编号最小就可以
代码不长,才\(203\)行(逃
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <queue>
#include <vector>
#define rint register int
using namespace std;
const int maxn=1e5+5;
const int maxm=5e5+5;
const int INF=0x3f3f3f3f;
int n,m,cnt[3],head[3][maxn];
int dis[maxn],rdis[maxn];
int zd[maxn],fd[maxn];
int in_edge[maxn];
int ans,del_node;
int Ans[maxn];
int fa[maxn],siz[maxn],son[maxn],top[maxn];
bool bel_tree[maxm+maxn];
struct Edge{
int from,to,next;
}e[3][maxm+maxn];
int tot,F[maxn];
struct P{
int x;
int y;
int val;
bool operator < (const P &B)const{
return val>B.val;
}
}pa[maxm+maxn];
int dfn[maxn][2],Time,mx[maxn][20],lg[maxn];
char buf[1<<20],*p1,*p2;
#define gc() (p1==p2?(p2=buf+fread(p1=buf,1,1<<20,stdin),p1==p2?EOF:*p1++):*p1++)
#define read() ({ rint x=0;register bool f=0;register char ch=gc(); while(ch<‘0‘||ch>‘9‘) f|=ch==‘-‘,ch=gc(); while(ch>=‘0‘&&ch<=‘9‘) x=(x<<3)+(x<<1)+(ch&15),ch=gc(); f?-x:x;})
void Init(){
memset(fa,0,sizeof fa);
memset(son,0,sizeof son);
memset(cnt,0,sizeof cnt);
memset(bel_tree,0,sizeof bel_tree);
for(rint i=0;i<=n+2;++i){
in_edge[i]=0;
zd[i]=0,fd[i]=0;
dis[i]=0,rdis[i]=0;
head[0][i]=0,head[1][i]=0,head[2][i]=0;
}
ans=INF,tot=0;
Time=0;
}
void Aedge(rint x,rint y,rint id){
e[id][++cnt[id]].to=y;
e[id][cnt[id]].next=head[id][x];
e[id][cnt[id]].from=x;
head[id][x]=cnt[id];
}
queue < int > q;
void cal_max1(){
q.push(n+1);
while(!q.empty()){
rint x=q.front();
q.pop();
for(rint i=head[0][x];i;i=e[0][i].next){
const rint y=e[0][i].to;
if(dis[y]<dis[x]+1){
dis[y]=dis[x]+1;
in_edge[y]=i;
}
if(--zd[y]==0) q.push(y);
}
}
}
void cal_max2(){
q.push(n+2);
while(!q.empty()){
rint x=q.front();
q.pop();
for(rint i=head[1][x];i;i=e[1][i].next){
const rint y=e[1][i].to,w=rdis[x]+1;
rdis[y] = rdis[y]<w ? w : rdis[y];
if(--fd[y]==0) q.push(y);
}
}
}
void dfs1(rint x,rint prt){
fa[x]=prt,siz[x]=1;
dfn[x][0]=++Time;
for(rint i=head[2][x];i;i=e[2][i].next){
const rint y=e[2][i].to;
if(y==prt) continue;
dfs1(y,x);
siz[x]+=siz[y];
if(!son[x]||siz[y]>siz[son[x]]) son[x]=y;
}
dfn[x][1]=Time;
}
void dfs2(int x,int tp){
top[x]=tp;
if(son[x]) dfs2(son[x],tp);
for(int i=head[2][x];i;i=e[2][i].next){
const rint y=e[2][i].to;
if(y!=son[x]&&y!=fa[x]) dfs2(y,y);
}
}
int lca(rint x,rint y){
rint tmp;
while(top[x]!=top[y]){
if(dis[top[x]]<dis[top[y]]){ tmp=x;x=y;y=tmp; }
x=fa[top[x]];
}
return dis[x]<dis[y]?x:y;
}
int find(rint x){
return F[x]==x?x:F[x]=find(F[x]);
}
int query(rint l,rint r){
if(l>r) return 0;
const rint d=lg[r-l+1];
return max(mx[l][d],mx[r+1-(1<<d)][d]);
}
void pre(){
for(rint i=1;i<=Time;++i) mx[dfn[i][0]][0]=dis[i];
for(rint j=1;j<=lg[Time];++j){
for(rint i=1;i+(1<<j)-1<=Time;++i){
mx[i][j]=max(mx[i][j-1],mx[i+(1<<(j-1))][j-1]);
}
}
for(rint i=1;i<=Time;++i) Ans[i]=max(query(1,dfn[i][0]-1),query(dfn[i][1]+1,Time));
}
int main(){
freopen("johnny.in","r",stdin);
freopen("johnny.out","w",stdout);
rint cs=read();
for(rint i=2;i<=100002;++i) lg[i]=lg[i/2]+1;
while(cs--){
Init();
n=read(),m=read();
for(rint i=1;i<=m;++i){
const rint x=read(),y=read();
Aedge(x,y,0),Aedge(y,x,1);
zd[y]++,fd[x]++;
}
for(rint i=1;i<=n;++i){
Aedge(n+1,i,0),Aedge(n+2,i,1);
zd[i]++,fd[i]++;
}
cal_max1();
cal_max2();
for(rint i=0;i<=n+2;++i) dis[i]--,rdis[i]--;
for(rint i=1;i<=n;++i){
const rint x=e[0][in_edge[i]].from,y=i;
bel_tree[in_edge[i]]=1;
Aedge(x,y,2),Aedge(y,x,2);
}
dfs1(n+1,0),dfs2(n+1,n+1);
pre();
for(rint i=1;i<=cnt[0];++i){
if(bel_tree[i]) continue;
const rint x=e[0][i].from,y=e[0][i].to;
pa[++tot]=(P){x,y,dis[x]+rdis[y]+1};
}
sort(pa+1,pa+1+tot);
for(rint i=1;i<=n+2;++i) F[i]=i;
for(rint i=1;i<=tot;++i){
rint x=pa[i].x;
rint y=pa[i].y;
const rint lc=lca(x,y);
const rint v=pa[i].val;
y=find(fa[y]);
while(dis[y]>dis[lc]){
Ans[y]=max(Ans[y],v);
F[y]=find(fa[y]);
y=F[y];
}
}
for(rint i=1;i<=n;++i) if(Ans[i]<ans||(Ans[i]==ans&&i<del_node)) ans=Ans[i],del_node=i;
printf("%d %d\n",del_node,ans);
}
return 0;
}
原文:https://www.cnblogs.com/Lour688/p/13919586.html