首页 > 其他 > 详细

1.机器学习,深度学习,神经网络

时间:2020-11-16 22:40:25      阅读:31      评论:0      收藏:0      [点我收藏+]

libcurl长连接高并发高性能

目录

1      绪论

1.1          概念介绍

1.2          机器学习

1.3          表示学习

1.3.1     局部表示和分布式表示

1.3.2     表示学习

1.4          深度学习

1.4.1     端到端学习

1.5          神经网络

 

1       绪论

1.1  概念介绍

深度学习是机器学习的一个分支,指从有限的样例中,通过算法总结出规律,可以应用到新的数据上。

人工神经网络是受人脑的神经系统启发而构造的数学模型,神经网络由神经元连接而成,有输入和输出,中间的信息处理传递路径比较长,复杂的神经网络比较深,所以叫深度学习。

人工智能发展时间线

 技术分享图片

 

 

1.2  机器学习

从有限的数据中学习出有一般性的规律,并对未知的数据进行预测。数据有多种多样的数据形式:图像、声音、文本。机器学习处理数据的步骤:

(1)   数据预处理:去噪声,去除文本的停用词。

(2)   特征提取:从原始数据中提取有效的特征。

(3)   特征转换:对特征进一步加工,比如降维:特征抽取,特征选择。常用的特征转换方法有主成分分析和线性判别分析。

(4)   预测。学习一个函数并预测结果。

1.3  表示学习

对原始数据进行一个抽象概括,提高分析预测的抽象能力。例如分析车辆数据,如果基于的是底层数据(汽车的像素数据),每辆车的颜色,形状,大小都不一样,分析了奔驰的数据,保时捷就识别不出。所以需要从更抽象的高层语义上去表示数据的特征,才能提高算法识别的准确性和通用性。那什么是好的表示,如何学到好的表示?

好的表示有三个特点

(1)   强表示能力,同样大小的向量可以表示更多的信息。

(2)   包含高层的语义信息,使后续的任务学习更加简单。

(3)   一般通用性,可以迁移到其他任务。

1.3.1         局部表示和分布式表示

局部表示:以颜色威力,用不同的名字来表示颜色:中国红,琥珀蓝等,也称为离散表示或符号表示,解释性好,用一维向量表示,每种颜色的一维向量中只有一个值为1, 其他都是0。每增加一种颜色,都要增加向量的长度。所以不容易扩展而且不好判断颜色之间的关系。

分布式表示:用RGB值来表示,三维的向量,维度低,值不同,表示不同的颜色。

嵌入:将从高维度的局部表示转换到低纬度的分布式表示过程。

1.3.2         表示学习

高层次的语义表示一般为分布式表示,例如RGB三个值表示颜色。通常需要从底层特征开始,经过多步非线性转换才能得到。

1.4  深度学习

为了学习到好的表示,需要构建一定深度的模型,通过学习算法让模型自动学习出好的特征表示(从底层特征,到中层特征,到高层特征),把原始数据变成让更高层次,更抽象的表示。从而提升预测模型的准确性,通用性。深度就是非线性特征的转换次数。深度学习就是从数据中学到有效的特征表示。也可以看作是从输入节点到输出节点所经过的最长路径的长度。深度学习需要解决是的贡献度分配问题,即一个系统中不同的组件或参数对最终系统输出结果的贡献或影响。通过误差反向传播,不断的强化模型,从而比较好的解决贡献度分配问题。

 技术分享图片

 

 

浅层学习

不涉及特征学习,其特征主要靠人工经验或特征转换方法来抽取。

 技术分享图片

 

 

1.4.1         端到端学习

复杂的任务需要分割成多个子模块,例如语言理解,词性理解,语义分析等多个步骤。分块学习会造成每个模块单独优化,误差对下一个模块的学习影响很大,端到端学习是指不进行分块训练,直接优化任务的总目标,中间过程不需要人为的干预。

1.5  神经网络

神经网络是模拟神经元结构而构造的数学模型,神经元由轴突和树突组成,轴突的信号传递到树突,如果树突接收到的信号总和超过阈值,则细胞会兴奋,产生电脉冲,传递给其他神经元。神经网络模拟神经元的结构、机理,、功能。由多个节点连接而成,节点之间的连接被赋予了不同的权重,权重代表影响大小,每个节点代表一个函数,其他节点的信息仅供权重计算之后,输入到激活函数,得到新的值,传递给下一个节点。

 技术分享图片

 

 

1.6  常用的深度学习框架

深度学习框架具有的特性

(1)简易和快速的原型设计

(2)自动梯度计算

(3)无缝CPU和GPU切换

 技术分享图片

 

1.机器学习,深度学习,神经网络

原文:https://www.cnblogs.com/bclshuai/p/13986999.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!