首页 > 其他 > 详细

三元表达式、列表推导式、生成器表达式、递归、匿名函数、内置函数

时间:2020-11-24 22:55:34      阅读:26      评论:0      收藏:0      [点我收藏+]

一 三元表达式、列表推导式、生成器表达式

一 三元表达式

name=input(姓名>>: )
res=SB if name == alex else NB
print(res)

二 列表推导式

技术分享图片
#1、示例
egg_list=[]
for i in range(10):
    egg_list.append(鸡蛋%s %i)

egg_list=[鸡蛋%s %i for i in range(10)]

#2、语法
[expression for item1 in iterable1 if condition1
for item2 in iterable2 if condition2
...
for itemN in iterableN if conditionN
]
类似于
res=[]
for item1 in iterable1:
    if condition1:
        for item2 in iterable2:
            if condition2
                ...
                for itemN in iterableN:
                    if conditionN:
                        res.append(expression)

#3、优点:方便,改变了编程习惯,可称之为声明式编程
技术分享图片

三 生成器表达式

技术分享图片
#1、把列表推导式的[]换成()就是生成器表达式

#2、示例:生一筐鸡蛋变成给你一只老母鸡,用的时候就下蛋,这也是生成器的特性
>>> chicken=(鸡蛋%s %i for i in range(5))
>>> chicken
<generator object <genexpr> at 0x10143f200>
>>> next(chicken)
鸡蛋0
>>> list(chicken) #因chicken可迭代,因而可以转成列表
[鸡蛋1, 鸡蛋2, 鸡蛋3, 鸡蛋4,]

#3、优点:省内存,一次只产生一个值在内存中
技术分享图片

四 声明式编程练习题

1、将names=[‘egon‘,‘alex_sb‘,‘wupeiqi‘,‘yuanhao‘]中的名字全部变大写

2、将names=[‘egon‘,‘alex_sb‘,‘wupeiqi‘,‘yuanhao‘]中以sb结尾的名字过滤掉,然后保存剩下的名字长度

3、求文件a.txt中最长的行的长度(长度按字符个数算,需要使用max函数)

4、求文件a.txt中总共包含的字符个数?思考为何在第一次之后的n次sum求和得到的结果为0?(需要使用sum函数)

5、思考题

with open(a.txt) as f:
    g=(len(line) for line in f)
print(sum(g)) #为何报错?

6、文件shopping.txt内容如下

mac,20000,3
lenovo,3000,10
tesla,1000000,10
chicken,200,1

求总共花了多少钱?

打印出所有商品的信息,格式为[{‘name‘:‘xxx‘,‘price‘:333,‘count‘:3},...]

求单价大于10000的商品信息,格式同上

技术分享图片
#题目一
names=[egon,alex_sb,wupeiqi,yuanhao]
names=[name.upper() for name in names]

#题目二
names=[egon,alex_sb,wupeiqi,yuanhao]
names=[len(name) for name in names if not name.endswith(sb)]

#题目三
with open(a.txt,encoding=utf-8) as f:
    print(max(len(line) for line in f))

#题目四
with open(a.txt, encoding=utf-8) as f:
    print(sum(len(line) for line in f))
    print(sum(len(line) for line in f)) #求包换换行符在内的文件所有的字符数,为何得到的值为0?
    print(sum(len(line) for line in f)) #求包换换行符在内的文件所有的字符数,为何得到的值为0?

#题目五(略)

#题目六:每次必须重新打开文件或seek到文件开头,因为迭代完一次就结束了
with open(a.txt,encoding=utf-8) as f:
    info=[line.split() for line in f]
    cost=sum(float(unit_price)*int(count) for _,unit_price,count in info)
    print(cost)


with open(a.txt,encoding=utf-8) as f:
    info=[{
        name: line.split()[0],
        price: float(line.split()[1]),
        count: int(line.split()[2]),
    } for line in f]
    print(info)


with open(a.txt,encoding=utf-8) as f:
    info=[{
        name: line.split()[0],
        price: float(line.split()[1]),
        count: int(line.split()[2]),
    } for line in f if float(line.split()[1]) > 10000]
    print(info)
View Code

二 递归与二分法

一 递归调用的定义

#递归调用是函数嵌套调用的一种特殊形式,函数在调用时,直接或间接调用了自身,就是递归调用
技术分享图片
#直接调用本身
def f1():
    print(from f1)
    f1()
f1()

#间接调用本身
def f1():
    print(from f1)
    f2()

def f2():
    print(from f2)
    f1()
f1()

# 调用函数会产生局部的名称空间,占用内存,因为上述这种调用会无需调用本身,python解释器的内存管理机制为了防止其无限制占用内存,对函数的递归调用做了最大的层级限制
四 可以修改递归最大深度

import sys
sys.getrecursionlimit()
sys.setrecursionlimit(2000)

def f1(n):
    print(from f1,n)
    f1(n+1)
f1(1)

虽然可以设置,但是因为不是尾递归,仍然要保存栈,内存大小一定,不可能无限递归,而且无限制地递归调用本身是毫无意义的,递归应该分为两个明确的阶段,回溯与递推
详解

二 递归调用应该分为两个明确的阶段:递推,回溯 

技术分享图片
#1、递归调用应该包含两个明确的阶段:回溯,递推
    回溯就是从外向里一层一层递归调用下去,
        回溯阶段必须要有一个明确地结束条件,每进入下一次递归时,问题的规模都应该有所减少(否则,单纯地重复调用自身是毫无意义的)

    递推就是从里向外一层一层结束递归

#2、示例+图解。。。
# salary(5)=salary(4)+300
# salary(4)=salary(3)+300
# salary(3)=salary(2)+300
# salary(2)=salary(1)+300
# salary(1)=100
#
# salary(n)=salary(n-1)+300     n>1
# salary(1) =100                n=1

def salary(n):
    if n == 1:
        return 100
    return salary(n-1)+300

print(salary(5)) 
技术分享图片

三 python中的递归效率低且没有尾递归优化

技术分享图片
#python中的递归
python中的递归效率低,需要在进入下一次递归时保留当前的状态,在其他语言中可以有解决方法:尾递归优化,即在函数的最后一步(而非最后一行)调用自己,尾递归优化:http://egon09.blog.51cto.com/9161406/1842475
但是python又没有尾递归,且对递归层级做了限制

#总结递归的使用:
1. 必须有一个明确的结束条件

2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少

3. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)
技术分享图片

四 二分法

想从一个按照从小到大排列的数字列表中找到指定的数字,遍历的效率太低,用二分法(算法的一种,算法是解决问题的方法)可以极大低缩小问题规模

技术分享图片
l=[1,2,10,30,33,99,101,200,301,311,402,403,500,900,1000] #从小到大排列的数字列表

def search(n,l):
    print(l)
    if len(l) == 0:
        print(not exists)
        return
    mid_index=len(l) // 2
    if n > l[mid_index]:
        #in the right
        l=l[mid_index+1:]
        search(n,l)
    elif n < l[mid_index]:
        #in the left
        l=l[:mid_index]
        search(n,l)
    else:
        print(find it)


search(3,l)
实现类似于in的效果
技术分享图片
l=[1,2,10,30,33,99,101,200,301,402]

def search(num,l,start=0,stop=len(l)-1):
    if start <= stop:
        mid=start+(stop-start)//2
        print(start:[%s] stop:[%s] mid:[%s] mid_val:[%s] %(start,stop,mid,l[mid]))
        if num > l[mid]:
            start=mid+1
        elif num < l[mid]:
            stop=mid-1
        else:
            print(find it,mid)
            return
        search(num,l,start,stop)
    else: #如果stop > start则意味着列表实际上已经全部切完,即切为空
        print(not exists)
        return

search(301,l)
实现类似于l.index(30)的效果

三 匿名函数

一 什么是匿名函数?

技术分享图片
匿名就是没有名字
def func(x,y,z=1):
    return x+y+z

匿名
lambda x,y,z=1:x+y+z #与函数有相同的作用域,但是匿名意味着引用计数为0,使用一次就释放,除非让其有名字
func=lambda x,y,z=1:x+y+z 
func(1,2,3)
#让其有名字就没有意义
技术分享图片

二 有名字的函数与匿名函数的对比

#有名函数与匿名函数的对比
有名函数:循环使用,保存了名字,通过名字就可以重复引用函数功能

匿名函数:一次性使用,随时随时定义

应用:max,min,sorted,map,reduce,filter

四 内置函数

#注意:内置函数id()可以返回一个对象的身份,返回值为整数。这个整数通常对应与该对象在内存中的位置,但这与python的具体实现有关,不应该作为对身份的定义,即不够精准,最精准的还是以内存地址为准。is运算符用于比较两个对象的身份,等号比较两个对象的值,内置函数type()则返回一个对象的类型

#更多内置函数:https://docs.python.org/3/library/functions.html?highlight=built#ascii 

技术分享图片

技术分享图片
#字符串可以提供的参数 ‘s‘ None
>>> format(some string,s)
some string
>>> format(some string)
some string

#整形数值可以提供的参数有 ‘b‘ ‘c‘ ‘d‘ ‘o‘ ‘x‘ ‘X‘ ‘n‘ None
>>> format(3,b) #转换成二进制
11
>>> format(97,c) #转换unicode成字符
a
>>> format(11,d) #转换成10进制
11
>>> format(11,o) #转换成8进制
13
>>> format(11,x) #转换成16进制 小写字母表示
b
>>> format(11,X) #转换成16进制 大写字母表示
B
>>> format(11,n) #和d一样
11
>>> format(11) #默认和d一样
11

#浮点数可以提供的参数有 ‘e‘ ‘E‘ ‘f‘ ‘F‘ ‘g‘ ‘G‘ ‘n‘ ‘%‘ None
>>> format(314159267,e) #科学计数法,默认保留6位小数
3.141593e+08
>>> format(314159267,0.2e) #科学计数法,指定保留2位小数
3.14e+08
>>> format(314159267,0.2E) #科学计数法,指定保留2位小数,采用大写E表示
3.14E+08
>>> format(314159267,f) #小数点计数法,默认保留6位小数
314159267.000000
>>> format(3.14159267000,f) #小数点计数法,默认保留6位小数
3.141593
>>> format(3.14159267000,0.8f) #小数点计数法,指定保留8位小数
3.14159267
>>> format(3.14159267000,0.10f) #小数点计数法,指定保留10位小数
3.1415926700
>>> format(3.14e+1000000,F)  #小数点计数法,无穷大转换成大小字母
INF

#g的格式化比较特殊,假设p为格式中指定的保留小数位数,先尝试采用科学计数法格式化,得到幂指数exp,如果-4<=exp<p,则采用小数计数法,并保留p-1-exp位小数,否则按小数计数法计数,并按p-1保留小数位数
>>> format(0.00003141566,.1g) #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留0位小数点
3e-05
>>> format(0.00003141566,.2g) #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留1位小数点
3.1e-05
>>> format(0.00003141566,.3g) #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留2位小数点
3.14e-05
>>> format(0.00003141566,.3G) #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留0位小数点,E使用大写
3.14E-05
>>> format(3.1415926777,.1g) #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留0位小数点
3
>>> format(3.1415926777,.2g) #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留1位小数点
3.1
>>> format(3.1415926777,.3g) #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留2位小数点
3.14
>>> format(0.00003141566,.1n) #和g相同
3e-05
>>> format(0.00003141566,.3n) #和g相同
3.14e-05
>>> format(0.00003141566) #和g相同
3.141566e-05
format(了解即可)
技术分享图片
字典的运算:最小值,最大值,排序
salaries={
    egon:3000,
    alex:100000000,
    wupeiqi:10000,
    yuanhao:2000
}

迭代字典,取得是key,因而比较的是key的最大和最小值
>>> max(salaries)
yuanhao
>>> min(salaries)
alex

可以取values,来比较
>>> max(salaries.values())
>>> min(salaries.values())
但通常我们都是想取出,工资最高的那个人名,即比较的是salaries的值,得到的是键
>>> max(salaries,key=lambda k:salary[k])
alex
>>> min(salaries,key=lambda k:salary[k])
yuanhao



也可以通过zip的方式实现
salaries_and_names=zip(salaries.values(),salaries.keys())

先比较值,值相同则比较键
>>> max(salaries_and_names)
(100000000, alex)


salaries_and_names是迭代器,因而只能访问一次
>>> min(salaries_and_names)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: min() arg is an empty sequence



sorted(iterable,key=None,reverse=False)
!!!lambda与内置函数结合使用!!!
技术分享图片
#1、语法
# eval(str,[,globasl[,locals]])
# exec(str,[,globasl[,locals]])

#2、区别
#示例一:
s=1+2+3
print(eval(s)) #eval用来执行表达式,并返回表达式执行的结果
print(exec(s)) #exec用来执行语句,不会返回任何值
‘‘‘
6
None
‘‘‘

#示例二:
print(eval(1+2+x,{x:3},{x:30})) #返回33
print(exec(1+2+x,{x:3},{x:30})) #返回None

# print(eval(‘for i in range(10):print(i)‘)) #语法错误,eval不能执行表达式
print(exec(for i in range(10):print(i)))
eval与exec
技术分享图片
compile(str,filename,kind)
filename:用于追踪str来自于哪个文件,如果不想追踪就可以不定义
kind可以是:single代表一条语句,exec代表一组语句,eval代表一个表达式
s=for i in range(10):print(i)
code=compile(s,‘‘,exec)
exec(code)


s=1+2+3
code=compile(s,‘‘,eval)
eval(code)
complie(了解即可)

五 阶段性练习

1、文件内容如下,标题为:姓名,性别,年纪,薪资

egon male 18 3000
alex male 38 30000
wupeiqi female 28 20000
yuanhao female 28 10000

要求:
从文件中取出每一条记录放入列表中,
列表的每个元素都是{‘name‘:‘egon‘,‘sex‘:‘male‘,‘age‘:18,‘salary‘:3000}的形式

2 根据1得到的列表,取出薪资最高的人的信息
3 根据1得到的列表,取出最年轻的人的信息
4 根据1得到的列表,将每个人的信息中的名字映射成首字母大写的形式
5 根据1得到的列表,过滤掉名字以a开头的人的信息
6 使用递归打印斐波那契数列(前两个数的和得到第三个数,如:0 1 1 2 3 4 7...)

7 一个嵌套很多层的列表,如l=[1,2,[3,[4,5,6,[7,8,[9,10,[11,12,13,[14,15]]]]]]],用递归取出所有的值

技术分享图片
#1
with open(db.txt) as f:
    items=(line.split() for line in f)
    info=[{name:name,sex:sex,age:age,salary:salary}           for name,sex,age,salary in items]

print(info)
#2
print(max(info,key=lambda dic:dic[salary]))

#3
print(min(info,key=lambda dic:dic[age]))

# 4
info_new=map(lambda item:{name:item[name].capitalize(),
                          sex:item[sex],
                          age:item[age],
                          salary:item[salary]},info)

print(list(info_new))

#5
g=filter(lambda item:item[name].startswith(a),info)
print(list(g))

#6
#非递归
def fib(n):
    a,b=0,1
    while a < n:
        print(a,end= )
        a,b=b,a+b
    print()

fib(10)
#递归
def fib(a,b,stop):
    if  a > stop:
        return
    print(a,end= )
    fib(b,a+b,stop)

fib(0,1,10)


#7
l=[1,2,[3,[4,5,6,[7,8,[9,10,[11,12,13,[14,15]]]]]]]

def get(seq):
    for item in seq:
        if type(item) is list:
            get(item)
        else:
            print(item)
get(l)
View Code

 

 

 

三元表达式、列表推导式、生成器表达式、递归、匿名函数、内置函数

原文:https://www.cnblogs.com/plyc/p/14032908.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!