这里给出论文的SupContrast: Supervised Contrastive Learning的损失函数Tensorflow版本,代码改自:https://github.com/thecharm/boundary-aware-nested-ner
损失文件losses.py
""" Author: Yonglong Tian (yonglong@mit.edu) Date: May 07, 2020 """ from __future__ import print_function import tensorflow as tf class SupConLoss(object): """Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf. It also supports the unsupervised contrastive loss in SimCLR""" def __init__(self, temperature=0.07, contrast_mode=‘all‘, base_temperature=0.07): super(SupConLoss, self).__init__() self.temperature = temperature self.contrast_mode = contrast_mode self.base_temperature = base_temperature def forward(self, features, labels=None, mask=None): """Compute loss for model. If both `labels` and `mask` are None, it degenerates to SimCLR unsupervised loss: https://arxiv.org/pdf/2002.05709.pdf Args: features: hidden vector of shape [bsz, n_views, ...]. labels: ground truth of shape [bsz]. mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j has the same class as sample i. Can be asymmetric. Returns: A loss scalar. """ sizes = features.get_shape().as_list() if len(sizes) < 3: raise ValueError(‘`features` needs to be [bsz, n_views, ...],‘ ‘at least 3 dimensions are required‘) if len(sizes) > 3: features = tf.reshape(features, [tf.shape(features)[0], tf.shape(features)[1], -1]) batch_size = tf.shape(features)[0] if labels is not None and mask is not None: raise ValueError(‘Cannot define both `labels` and `mask`‘) elif labels is None and mask is None: mask = tf.eye(batch_size, dtype=tf.float32) elif labels is not None: labels = tf.reshape(labels, [-1,1]) mask = tf.cast(tf.equal(labels, tf.transpose(labels,[1,0])),dtype=tf.float32) else: mask = tf.cast(mask,dtype=tf.float32) # contrast_count = tf.shape(features)[1] contrast_count = features.get_shape().as_list()[1] contrast_feature = tf.concat(tf.unstack(features,axis=1),axis=0) if self.contrast_mode == ‘one‘: anchor_feature = features[:, 0] anchor_count = 1 elif self.contrast_mode == ‘all‘: anchor_feature = contrast_feature anchor_count = contrast_count else: raise ValueError(‘Unknown mode: {}‘.format(self.contrast_mode)) # compute logits anchor_dot_contrast = tf.matmul(anchor_feature, contrast_feature, transpose_b=True)/self.temperature # for numerical stability logits_max = tf.reduce_max(anchor_dot_contrast, axis=1, keep_dims=True) logits = anchor_dot_contrast - tf.stop_gradient(logits_max) # tile mask mask = tf.tile(mask,[anchor_count, contrast_count]) # mask-out self-contrast cases logits_mask = tf.ones_like(mask) -tf.one_hot(tf.reshape(tf.range(batch_size * anchor_count),[-1]), depth=batch_size * anchor_count) mask = mask * logits_mask # compute log_prob exp_logits = tf.exp(logits) * logits_mask log_prob = logits - tf.log(tf.reduce_sum(exp_logits,axis=1, keep_dims=True)) # compute mean of log-likelihood over positive mean_log_prob_pos = tf.reduce_sum(mask * log_prob, axis=1) / tf.reduce_sum(mask, axis=1) # loss loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos loss = tf.reduce_mean(tf.reshape(loss, [anchor_count, batch_size])) # loss = tf.reduce_mean(loss) return loss
测试:
import tensorflow as tf
import losses
import os
os.environ["CUDA_VISIBLE_DEVICES"]=‘0‘
loss = losses.SupConLoss()
X = tf.random_uniform([10,2,5])
y = tf.random_uniform([10],minval=0, maxval=2, dtype=tf.int32)
sess = tf.Session()
print(sess.run(loss.forward(X,y)))
输出:8.23587
原文:https://www.cnblogs.com/huadongw/p/14091240.html