在仔细比对了anchor-based和anchor-free目标检测方法后,结合实验结果,论文认为两者的性能差异主要来源于正负样本的定义,假如训练过程中使用相同的正负样本,两者的最终性能将会相差无几。为此,论文提出ATSS( Adaptive Training Sample Selection)方法,基于GT的相关统计特征自动选择正负样本,能够消除anchor-based和anchor-free算法间的性能差异。
论文的主要贡献如下:
论文选取anchor-based方法RetinaNet和anchor-free方法FCOS进行对比,主要对比正负样本定义和回归开始状态的差异,将RetinaNet的anchor数改为1降低差异性,方便与FCOS比较,后续会测试anchor数带来的作用。
Inconsistency Removal
由于FCOS加入了很多trick,这里将RetinaNet与其进行对齐,包括GroupNorm、GIoU loss、限制正样本必须在GT内、Centerness branch以及添加可学习的标量控制FPN的各层的尺寸。结果如表1,最终的RetinaNet仍然与FCOS有些许的性能差异,但在实现方法上已经基本相同了。
Essential Difference
在经过上面的对齐后,仅剩两个差异的地方:(i) 分类分支上的正负样本定义 (ii) 回归分支上的bbox精调初始状态(start from anchor box or anchor point)。
RetinaNet使用IoU阈值(,)来区分正负anchor bbox,处于中间的全部忽略。FCOS使用空间尺寸和尺寸限制来区分正负anchor point,正样本首先必须在GT box内,其次需要是GT尺寸对应的层,其余均为负样本。
RetinaNet预测4个偏移值对anchor box进行调整输出,而FCOS则预测4个相对于anchor point值对anchor box进行调整输出。
对上面的差异进行交叉实验,发现相同的正负样本定义下的RetinaNet和FCOS性能几乎一样,不同的定义方法性能差异较大,而回归初始状态对性能影响不大。所以,基本可以确定正负样本的确定方法是影响性能的重要一环。
Adaptive Training Sample Selection
论文提出ATSS方法,该方法根据目标的相关统计特征自动进行正负样本的选择,具体逻辑如算法1所示。对于每个GT box ,首先在每个特征层找到中心点最近的个候选anchor boxes(非预测结果),计算候选box与GT间的IoU ,计算IoU的均值和标准差,得到IoU阈值,最后选择阈值大于的box作为最后的输出。如果anchor box对应多个GT,则选择IoU最大的GT。
ATSS的思想主要考虑了下面几个方向:
在RetinaNet中,anchor box与GT中心点越近一般IoU越高,而在FCOS中,中心点越近一般预测的质量越高
均值表示预设的anchor与GT的匹配程度,均值高则应当提高阈值来调整正样本,均值低则应当降低阈值来调整正样本。标准差表示适合GT的FPN层数,标准差高则表示高质量的anchor box集中在一个层中,应将阈值加上标准差来过滤其他层的anchor box,低则表示多个层都适合该GT,将阈值加上标准差来选择合适的层的anchor box,均值和标准差结合作为IoU阈值能够很好地自动选择对应的特征层上合适的anchor box。
若anchor box的中心点不在GT区域内,则其会使用非GT区域的特征进行预测,这不利于训练,应该排除。
根据统计原理,大约16%的anchor box会落在,尽管候选框的IoU不是标准正态分布,但统计下来每个GT大约有个正样本,与其大小和长宽比无关,而RetinaNet和FCOS则是偏向大目标有更多的正样本,导致训练不公平。
ATSS仅有一个超参数,后面的使用会表明ATSS的性能对不敏感,所以ATSS几乎是hyperparameter-free的。
Verification
将ATSS应用到RetinaNet和FCOS上测试效果:
参数k在区间几乎是一样的,过大的设置会到导致过多的低质量候选anchor,而过小的设置则会导致过少的正样本,而且统计结果也不稳定。总体而言,参数是相对鲁棒的,可以认为ATSS是hyperparameter-free。
在FCOS的full版本中使用了的anchor box,论文对不同的尺寸进行了对比,如表5所示,也在基础上对不同的长宽比进行了对比,如表6所示。从结果来看,性能几乎对尺寸和长宽比无关,相对鲁棒。
Discussion
前面的RetinaNet实验只用了一个anchor box,论文补充测试了不同anchor数下的性能,实验中的Imprs为表1中的提升手段。从结果来看,在每个位置设定多个anchor box是无用的操作,关键在于选择合适的正样本。
Comparison
实现的是FCOS版本的ATSS,在相同的主干网络下,ATSS方法能够大幅增加准确率,十分有效。
结论
论文指出one-stage anchor-based和center-based anchor-free检测算法间的差异主要来自于正负样本的选择,基于此提出ATSS(Adaptive Training Sample Selection)方法,该方法能够自动根据GT的相关统计特征选择合适的anchor box作为正样本,在不带来额外计算量和参数的情况下,能够大幅提升模型的性能,十分有用。
摘自:https://zhuanlan.zhihu.com/p/115572876
原文:https://www.cnblogs.com/ahuzcl/p/14106960.html