首页 > 其他 > 详细

方差(Variance)、协方差(Covariance)与相关性系数

时间:2020-12-10 09:31:01      阅读:92      评论:0      收藏:0      [点我收藏+]

方差
方差主要计算一维数组的离散程度
技术分享图片

协方差
协方差主要衡量两组变量或者二维变量的相似程度
技术分享图片
技术分享图片
很明显,所谓的协方差就是方差在二维上的呈现。那么一维数据自身的协方差是如何计算呢?
技术分享图片
一维数据和自己的协方差,就是数据本身的方差,方差是协方差的特殊情况。
值得注意的是当两组数据的协方差为0时,说明两组数据线性无关。而两组数据的协方差越大,相关性也就越大。当协方差为负时,两组数据负相关,反之为正相关。

相关性系数
技术分享图片
相关性系数也可以被理解成一种特殊的协方差。相对于协方差来说,它是经过了标准化的消除了变化幅度的影响的协方差,可以单纯反应两个变量每单位变化时的相似程度。
这里的消除变化幅度的影响如何理解呢?两组数据变化趋势相同时,可能幅度相差很多,导致协方差的计算值在负无穷到正无穷之间变化。但我们经过了标准化处理,使得相关性系数的值集中在-1到1之间。当相关系数为-1时,说明两个变量变化的反向相似度最大,X增大时,Y进行等值缩小,反之亦然。

方差(Variance)、协方差(Covariance)与相关性系数

原文:https://www.cnblogs.com/lqcao/p/14111784.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!