3. 聚类的结果不会告诉零售商每位顾客可能会买什么,也不会预测新来的顾客适合哪种时尚,聚类算法的目标是采集数据,然后从中找出不同的数组。
例如:可以通过聚类来对博客用户进行分类
这个说法的假设前提是:我们有众多的博客用户,但这些用户并没有显著的特征标签,在这种情况下,如何有效的对这些用户进行分类。这时候聚类就派上用场了。
基本过程:
1. 构建一个博客订阅源列表
2. 利用订阅源列表建立一个单词列表,将其实际用于针对每个博客的单词计数。
3. 我们利用上述单词列表和博客列表来建立一个文本文件,其中包含一个大的矩阵,记录者针对每个博客的所有单词的统计情况。(例如:可以用列对应单词,用行对应博客),一个可用的代码如下:
import feedparser import re # Returns title and dictionary of word counts for an RSS feed def getwordcounts(url): # Parse the feed d=feedparser.parse(url) wc={} # Loop over all the entries for e in d.entries: if ‘summary‘ in e: summary=e.summary else: summary=e.description # Extract a list of words words=getwords(e.title+‘ ‘+summary) for word in words: wc.setdefault(word,0) wc[word]+=1 return d.feed.title,wc def getwords(html): # Remove all the HTML tags txt=re.compile(r‘<[^>]+>‘).sub(‘‘,html) # Split words by all non-alpha characters words=re.compile(r‘[^A-Z^a-z]+‘).split(txt) # Convert to lowercase return [word.lower() for word in words if word!=‘‘]
5. 进行聚类:这里有两种可用的方法
分级聚类:
分级聚类通过连续不断地将最为相似的群组两两合并,直到只剩一个群组为止,来构造出一个群组的层级结构。其过程可以参考下图:
分级聚类基本算法如下:(这里省略了一些细节函数,如加载文件,计算皮尔逊相似度等)
def hcluster(rows,distance=pearson): distances={} currentclustid=-1 # Clusters are initially just the rows clust=[bicluster(rows[i],id=i) for i in range(len(rows))] while len(clust)>1: lowestpair=(0,1) closest=distance(clust[0].vec,clust[1].vec) # loop through every pair looking for the smallest distance for i in range(len(clust)): for j in range(i+1,len(clust)): # distances is the cache of distance calculations if (clust[i].id,clust[j].id) not in distances: distances[(clust[i].id,clust[j].id)]=distance(clust[i].vec,clust[j].vec) d=distances[(clust[i].id,clust[j].id)] if d<closest: closest=d lowestpair=(i,j) # calculate the average of the two clusters mergevec=[ (clust[lowestpair[0]].vec[i]+clust[lowestpair[1]].vec[i])/2.0 for i in range(len(clust[0].vec))] # create the new cluster newcluster=bicluster(mergevec,left=clust[lowestpair[0]], right=clust[lowestpair[1]], distance=closest,id=currentclustid) # cluster ids that weren‘t in the original set are negative currentclustid-=1 del clust[lowestpair[1]] del clust[lowestpair[0]] clust.append(newcluster) return clust[0]
待分级聚类完成后,我们可以采用一种图形化的方式来展现所得的结果,这种图被称为树状图(dendrogram),如下图所示。例如:我们针对博客数据进行聚类,以构造博客的层级结构,如果构造成功,我们将实现按主题对博客进行分组。
图:树状图(图片来自网络)
树状图的绘制,可以使用一个Python包:Python Imaging Library(PIL)
借助PIL,我们可以非常轻松地生成带有文本和线条的图形。
from PIL import Image,ImageDraw
首先,必须利用一个函数来返回给定聚类的总体高度。
K-均值聚类:
分级聚类的结果为我们返回了一棵形象直观的树。但存在两个缺点:
1. 没有额外投入的情况下,树形视图是不会真正将数据拆分成不同组的
2. 算法的计算量非常大,大数据集情况下,速度很慢
K-均值聚类:
预先告诉速算法希望生成的聚类数量,然后算法会根据数据的结构状况来确定聚类的大小。
算法首先会随机确定K个中心位置,然后将各个数据项分配给最临近的中心点。待分配完成之后,聚类中心就会移到分配给该聚类的所有节点的平均位置处,然后整个分配过程重新开始。这一过程会一直重复下去,知道分配过程不再产生变化为止。
代码如下:
import random def kcluster(rows,distance=pearson,k=4): # Determine the minimum and maximum values for each point ranges=[(min([row[i] for row in rows]),max([row[i] for row in rows])) for i in range(len(rows[0]))] # Create k randomly placed centroids clusters=[[random.random()*(ranges[i][1]-ranges[i][0])+ranges[i][0] for i in range(len(rows[0]))] for j in range(k)] lastmatches=None for t in range(100): print ‘Iteration %d‘ % t bestmatches=[[] for i in range(k)] # Find which centroid is the closest for each row for j in range(len(rows)): row=rows[j] bestmatch=0 for i in range(k): d=distance(clusters[i],row) if d<distance(clusters[bestmatch],row): bestmatch=i bestmatches[bestmatch].append(j) # If the results are the same as last time, this is complete if bestmatches==lastmatches: break lastmatches=bestmatches # Move the centroids to the average of their members for i in range(k): avgs=[0.0]*len(rows[0]) if len(bestmatches[i])>0: for rowid in bestmatches[i]: for m in range(len(rows[rowid])): avgs[m]+=rows[rowid][m] for j in range(len(avgs)): avgs[j]/=len(bestmatches[i]) clusters[i]=avgs return bestmatches
其过程如下图所示:
图:K-均值聚类
参考:集体智慧编程,ch3发现群组
原文:http://blog.csdn.net/tao_sun/article/details/19488517