首页 > 其他 > 详细

如何画出几种常见二分类损失函数(附代码)

时间:2020-12-27 02:12:54      阅读:23      评论:0      收藏:0      [点我收藏+]
原创 机器学习初学者 机器学习初学者 4月17日
在二分类的监督学习中,支持向量机、逻辑斯谛回归与最大熵模型、提升方法各自使用合页损失函数、逻辑斯谛损失函数、指数损失函数,分别写为:

技术分享图片
这 3 种损失函数都是 0-1 损失函数的上界,具有相似的形状。(见下图,由代码生成)

import numpy as np
import math
import matplotlib.pyplot as plt
plt.rcParams[‘font.sans-serif‘] = [‘SimHei‘]
plt.rcParams[‘axes.unicode_minus‘] = False
plt.figure(figsize=(10,8))
x = np.linspace(start=-1, stop=2, num=1001, dtype=np.float)
logi = np.log(1 + np.exp(-x)) / math.log(2)
boost = np.exp(-x)
y_01 = x < 0
y_hinge = 1.0 - x
y_hinge[y_hinge < 0] = 0

plt.plot(x, y_01, ‘g-‘, mec=‘k‘, label=‘(0/1损失)0/1 Loss‘, lw=2)
plt.plot(x, y_hinge, ‘b-‘, mec=‘k‘, label=‘(合页损失)Hinge Loss‘, lw=2)
plt.plot(x, boost, ‘m--‘, mec=‘k‘, label=‘(指数损失)Adaboost Loss‘, lw=2)
plt.plot(x, logi, ‘r-‘, mec=‘k‘, label=‘(逻辑斯谛损失)Logistic Loss‘, lw=2)
plt.grid(True, ls=‘--‘)
plt.legend(loc=‘upper right‘,fontsize=15)
plt.xlabel(‘函数间隔:$yf(x)$‘,fontsize=20)
plt.title(‘损失函数‘,fontsize=20)
plt.show()

技术分享图片

如何画出几种常见二分类损失函数(附代码)

原文:https://blog.51cto.com/15064630/2573008

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!