首页 > 其他 > 详细

13.三元表达式,生成式,递归函数,匿名函数,面向过程编程

时间:2021-01-02 23:05:43      阅读:36      评论:0      收藏:0      [点我收藏+]
  • 引子

  • 三元表达式

  • 生成式

  • 递归函数

  • 匿名函数

  • 面向过程编程


  • 三元表达式

def max2(x,y):
    if x > y:
        return x
    else:
        return y

x=11
y=22

res = ‘ok‘ if x > y else ‘no‘
print(res)

  • 生成式

  • 列表生成式
# 案例1
l = []
for i in range(10):
    l.append(i)
print(l)

l = [i for i in range(10)]
print(l)

# 案例2
l = []
for i in range(10):
    if i > 5:
        l.append(i)
print(l)

l = [i for i in range(10) if i > 5]
print(l)

# 案例3:
names = ["lxx",‘hxx‘,"wxx",‘lili‘]
l = [name + "_sb" for name in names]
print(l)

# 案例4:
names = ["egon","lxx_sb","hxx_sb","wxx_sb"]
res = [name for name in names if name.endswith("sb")]
print(res)

  • 字典生成式
字典生成式
res = {i: i ** 2 for i in range(5)}
items = [(‘k1‘,111),(‘k2‘,222),(‘k3‘,333)]
print(dict(items))
print({k:v for k,v in items})

  • 集合生成式
res = {i for i in range(5)}
print(res)

  • 生成器表达式
res = (i for i in range(3))
print(res)
print(next(res))
print(next(res))
print(next(res))
print(next(res))


with open(‘a.txt‘,mode=‘rt‘,encoding=‘utf-8‘) as f:
    # res = f.read()
    # print(len(res))

    # res = 0
    # for line in f:
    #     res += len(line)

    # res = sum((len(line) for line in f))
    res = sum(len(line) for line in f)

    print(res)

  • 函数递归

  • 函数的递归调用:

    在调用一个函数的内部又调用自己,所以递归调用的本质就是一个循环的过程

    大前提: 递归调用一定要在某一层结束

def func():
    print("func")
    func()

# func()

import sys
sys.setrecursionlimit(2000)
print(sys.getrecursionlimit())

?

  • 递归的两个阶段:

    ? 1、回溯:向下一层一层挖井
    ? 2、递推:向上一层一层返回

age(5) = age(4) + 10
age(4) = age(3) + 10
age(3) = age(2) + 10
age(2) = age(1) + 10
age(1) = 18

def age(n):
    if n == 1:
        return 18
    return age(n-1) + 10

res = age(5)
print(res)


nums = [1,[2,[3,[4,[5,[6,[7,]]]]]]]

def get(l):
    for num in l:
        if type(num) is list:
            get(num)
        else:
            print(num)

get(nums)

  • 二分法
nums = [-3,1,3,7,13,23,37,43,57,63,77,91,103]
find_num = 64

def find(nums,find_num):
    print(nums)
    if len(nums) == 0:
        print("not exists")
        return
    mid_index = len(nums) // 2
    if find_num > nums[mid_index]:
        # in the right
        find(nums[mid_index+1:],find_num)
    elif find_num < nums[mid_index]:
        # in the left
        find(nums[:mid_index], find_num)
    else:
        print(‘you got it‘)


find(nums,find_num)


  • 匿名函数

    • 匿名函数:没有名字的函数
    • 特点:临时用一次、随时定义

def func():
    print(‘func‘)

func()
func()
func()

f = lambda x,y:x+y
print(f)
res = f(1,2)
print(res)

res = (lambda x,y:x+y)(1,2)
print(res)


salaries = {
    "egon":3000,
    "tom":1000000,
    "zxx":1000
}

print(max([11,22,33]))
print(max(salaries.values()))
print(max(salaries))

def func(k):
    return salaries[k]


print(max(salaries,key=func))
print(max(salaries,key=lambda k:salaries[k]))
print(min(salaries,key=lambda k:salaries[k]))
print(sorted(salaries,key=lambda k:salaries[k]))
print(sorted(salaries,key=lambda k:salaries[k],reverse=True))


map
names = ["lxx",‘hxx‘,"wxx",‘lili‘]
                    规则
       "lxx_sb","hxx_sb"

l = (name + "_sb" for name in names)
res = map(lambda name:name + "_sb",names)
print(list(res))

filter
names = ["lxx_sb",‘egon‘,"wxx_sb",‘lili_sb‘]
print([name for name in names if name.endswith(‘sb‘)])

res = filter(lambda name:name.endswith(‘sb‘),names)
print(list(res))

reduce
from functools import reduce

res = reduce(lambda x,y:x+y,[1,2,3])
res = reduce(lambda x,y:x+y,["aa","bb","cc"])
print(res)


res = pow(10,2,3)  # 10 ** 2 % 3
print(res)

  • 面向过程编程

    • 强调:

      面向过程编程绝对不是用函数编程这么简单,面向过程是一种编程思路、思想,而编程思路是不依赖于具体的
      语言或语法的。 言外之意是即使我们不依赖于函数,也可以基于面向过程的思想编写程序

    • 定义:

      核心是“过程”二字,过程就是解决问题的步骤,即先干啥、再干啥、后干啥
      所以基于该思想编写程序就好比设计一条一条的流水线

      优点:复杂的问题流程化、进而就简单化
      缺点:牵一发而动全身、扩展性差

    • 应用:

      扩展性要求不高的场景,典型案例如linux内核,git,httpd

13.三元表达式,生成式,递归函数,匿名函数,面向过程编程

原文:https://www.cnblogs.com/gfeng/p/14222571.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!