Chapter 2 - Data Preparation Basics
Segment 2 - Treating missing values
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
Figuring out what data is missing
missing = np.nan
series_obj = Series([‘row 1‘,‘row 2‘,missing,‘row 4‘,‘row 5‘,‘row 6‘,missing,‘row 8‘])
series_obj
0 row 1
1 row 2
2 NaN
3 row 4
4 row 5
5 row 6
6 NaN
7 row 8
dtype: object
series_obj.isnull()
0 False
1 False
2 True
3 False
4 False
5 False
6 True
7 False
dtype: bool
Filling in for missing values
np.random.seed(25)
DF_obj = DataFrame(np.random.rand(36).reshape(6,6))
DF_obj
|
0 |
1 |
2 |
3 |
4 |
5 |
0 |
0.870124 |
0.582277 |
0.278839 |
0.185911 |
0.411100 |
0.117376 |
1 |
0.684969 |
0.437611 |
0.556229 |
0.367080 |
0.402366 |
0.113041 |
2 |
0.447031 |
0.585445 |
0.161985 |
0.520719 |
0.326051 |
0.699186 |
3 |
0.366395 |
0.836375 |
0.481343 |
0.516502 |
0.383048 |
0.997541 |
4 |
0.514244 |
0.559053 |
0.034450 |
0.719930 |
0.421004 |
0.436935 |
5 |
0.281701 |
0.900274 |
0.669612 |
0.456069 |
0.289804 |
0.525819 |
DF_obj.loc[3:5, 0] = missing
DF_obj.loc[1:4, 5] = missing
DF_obj
|
0 |
1 |
2 |
3 |
4 |
5 |
0 |
0.870124 |
0.582277 |
0.278839 |
0.185911 |
0.411100 |
0.117376 |
1 |
0.684969 |
0.437611 |
0.556229 |
0.367080 |
0.402366 |
NaN |
2 |
0.447031 |
0.585445 |
0.161985 |
0.520719 |
0.326051 |
NaN |
3 |
NaN |
0.836375 |
0.481343 |
0.516502 |
0.383048 |
NaN |
4 |
NaN |
0.559053 |
0.034450 |
0.719930 |
0.421004 |
NaN |
5 |
NaN |
0.900274 |
0.669612 |
0.456069 |
0.289804 |
0.525819 |
filled_DF = DF_obj.fillna(0)
filled_DF
|
0 |
1 |
2 |
3 |
4 |
5 |
0 |
0.870124 |
0.582277 |
0.278839 |
0.185911 |
0.411100 |
0.117376 |
1 |
0.684969 |
0.437611 |
0.556229 |
0.367080 |
0.402366 |
0.000000 |
2 |
0.447031 |
0.585445 |
0.161985 |
0.520719 |
0.326051 |
0.000000 |
3 |
0.000000 |
0.836375 |
0.481343 |
0.516502 |
0.383048 |
0.000000 |
4 |
0.000000 |
0.559053 |
0.034450 |
0.719930 |
0.421004 |
0.000000 |
5 |
0.000000 |
0.900274 |
0.669612 |
0.456069 |
0.289804 |
0.525819 |
filled_DF = DF_obj.fillna({0:0.1, 5:1.25})
filled_DF
|
0 |
1 |
2 |
3 |
4 |
5 |
0 |
0.870124 |
0.582277 |
0.278839 |
0.185911 |
0.411100 |
0.117376 |
1 |
0.684969 |
0.437611 |
0.556229 |
0.367080 |
0.402366 |
1.250000 |
2 |
0.447031 |
0.585445 |
0.161985 |
0.520719 |
0.326051 |
1.250000 |
3 |
0.100000 |
0.836375 |
0.481343 |
0.516502 |
0.383048 |
1.250000 |
4 |
0.100000 |
0.559053 |
0.034450 |
0.719930 |
0.421004 |
1.250000 |
5 |
0.100000 |
0.900274 |
0.669612 |
0.456069 |
0.289804 |
0.525819 |
fill_DF = DF_obj.fillna(method=‘ffill‘)
fill_DF
|
0 |
1 |
2 |
3 |
4 |
5 |
0 |
0.870124 |
0.582277 |
0.278839 |
0.185911 |
0.411100 |
0.117376 |
1 |
0.684969 |
0.437611 |
0.556229 |
0.367080 |
0.402366 |
0.117376 |
2 |
0.447031 |
0.585445 |
0.161985 |
0.520719 |
0.326051 |
0.117376 |
3 |
0.447031 |
0.836375 |
0.481343 |
0.516502 |
0.383048 |
0.117376 |
4 |
0.447031 |
0.559053 |
0.034450 |
0.719930 |
0.421004 |
0.117376 |
5 |
0.447031 |
0.900274 |
0.669612 |
0.456069 |
0.289804 |
0.525819 |
Counting missing values
np.random.seed(25)
DF_obj = DataFrame(np.random.rand(36).reshape(6,6))
DF_obj.loc[3:5, 0] = missing
DF_obj.loc[1:4, 5] = missing
DF_obj
|
0 |
1 |
2 |
3 |
4 |
5 |
0 |
0.870124 |
0.582277 |
0.278839 |
0.185911 |
0.411100 |
0.117376 |
1 |
0.684969 |
0.437611 |
0.556229 |
0.367080 |
0.402366 |
NaN |
2 |
0.447031 |
0.585445 |
0.161985 |
0.520719 |
0.326051 |
NaN |
3 |
NaN |
0.836375 |
0.481343 |
0.516502 |
0.383048 |
NaN |
4 |
NaN |
0.559053 |
0.034450 |
0.719930 |
0.421004 |
NaN |
5 |
NaN |
0.900274 |
0.669612 |
0.456069 |
0.289804 |
0.525819 |
DF_obj.isnull().sum()
0 3
1 0
2 0
3 0
4 0
5 4
dtype: int64
Filtering out missing values
DF_no_NaN = DF_obj.dropna()
DF_no_NaN
|
0 |
1 |
2 |
3 |
4 |
5 |
0 |
0.870124 |
0.582277 |
0.278839 |
0.185911 |
0.4111 |
0.117376 |
DF_no_NaN = DF_obj.dropna(axis=1)
DF_no_NaN
|
1 |
2 |
3 |
4 |
0 |
0.582277 |
0.278839 |
0.185911 |
0.411100 |
1 |
0.437611 |
0.556229 |
0.367080 |
0.402366 |
2 |
0.585445 |
0.161985 |
0.520719 |
0.326051 |
3 |
0.836375 |
0.481343 |
0.516502 |
0.383048 |
4 |
0.559053 |
0.034450 |
0.719930 |
0.421004 |
5 |
0.900274 |
0.669612 |
0.456069 |
0.289804 |
Python for Data Science - Treating missing values
原文:https://www.cnblogs.com/keepmoving1113/p/14222788.html