clc; clear; con=pi/180; rxx2=30; ryy2=10; a=57;b=120;rx=rxx2*con;ry=ryy2*con;xpw=6;ypw=8;zpw=-10;zw=265;et=10; aa=(zpw+zw-et*cos(ry)*cos(rx))*tan(ry)-a*sin(ry)*sin(rx); bb=-1*a*cos(rx)+b; cc=(zpw+zw-et*cos(ry)*cos(rx))-a*cos(ry)*sin(rx); q1=sqrt(aa^2+bb^2+cc^2); aa2=(zpw+zw-et*cos(ry)*cos(rx))*tan(ry)+a*sin(ry)*sin(rx); bb2=a*cos(rx)-b; cc2=(zpw+zw-et*cos(ry)*cos(rx))+a*cos(ry)*sin(rx); q2=sqrt(aa2^2+bb2^2+cc2^2); aa3=(zpw+zw-et*cos(ry)*cos(rx))*tan(ry)+a*cos(ry)-b; bb3=zpw+zw-et*cos(ry)*cos(rx)-a*sin(ry); q3=sqrt(aa3^2+bb3^2); aa4=(zpw+zw-et*cos(ry)*cos(rx))*tan(ry)-a*cos(ry)+b; bb4=zpw+zw-et*cos(ry)*cos(rx)+a*sin(ry); q4=sqrt(aa4^2+bb4^2); xw=(zpw+zw-et*cos(ry)*cos(rx))*tan(ry)+et*cos(rx)*sin(ry)-xpw yw=-1*et*sin(ry)-ypw %% %正解 k1=(q4)^2+(q3)^2-(2*(((q4)^2-(q3)^2)/(4*b))^2+2*(a^2+b^2)); k2=-4*a*b; k3=2*(((q4)^2-(q3)^2)/(4*b))^2 k6=-1*(k1+k3)/k2; k4=-1*(k6^2)/3-1; k5=-1*(k6/3)^3+(k6^3)/9+k1/k2+k6/3; kk=(k5/2)^2+(k4/3)^3 k7=-1*k5/2-sqrt(kk); k8=-1*k5/2+sqrt(kk); ww=complex(-0.5,sqrt(3)/2); t1=k7^(1/3)+k8^(1/3); t2=((k7)^(1/3))*ww+((k8)^(1/3))*ww*ww; t3=((k7)^(1/3))*ww*ww+((k8)^(1/3))*ww; t01=t1-k6/3; t02=t2-k6/3 t03=t3-k6/3 ryy1=sign(q4-q3)*(acos(t01)/con); xpw1=(zpw+zw-et*cos(ry)*cos(rx))*tan(ry)+et*cos(rx)*sin(ry)-xw ypw1=-1*et*sin(ry)-yw
原文:https://www.cnblogs.com/charles48789982/p/14258730.html