搭建逻辑回归模型对mnist数据集中手写字体进行分类
1、加载数据
minst=input_data.read_data_sets(‘data/‘,one_hot=True) trainimg=minst.train.images trainlabel=minst.train.labels testimg=minst.test.images testlabel=minst.test.labels print(‘minst loaded‘)
2、设置变量
x=tf.placeholder("float",[None,784]) y=tf.placeholder("float",[None,10]) W=tf.Variable(tf.zeros([784,10])) b=tf.Variable(tf.zeros([10]))
3、回归模型
这里回归模型用softmax做十分类任务
#logistic regression model actv=tf.nn.softmax(tf.matmul(x,W)+b) #cost cost=tf.reduce_mean(-tf.reduce_sum(y*tf.log(actv),reduction_indices=1)) #optimizer learning_rate=0.01 optm=tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost) #prediction pred=tf.equal(tf.argmax(actv,1), tf.argmax(y,1)) #accuracy accr=tf.reduce_mean(tf.cast(pred,"float"))
4、开始训练
#initializer init=tf.global_variables_initializer() sess=tf.InteractiveSession() training_epochs=50 batch_size=100 display_step=5 sess=tf.Session() sess.run(init) for epoch in range(training_epochs): avg_cost=0. num_batch=int(minst.train.num_examples/batch_size) for i in range(num_batch): batch_xs,batch_ys=minst.train.next_batch(batch_size) feeds={x:batch_xs,y:batch_ys} sess.run(optm,feed_dict=feeds) avg_cost+=sess.run(cost,feeds)/num_batch #display if epoch%display_step==0: feeds_train={x:batch_xs,y:batch_ys} feeds_test={x:minst.test.images,y:minst.test.labels} train_acc=sess.run(accr,feed_dict=feeds_train) test_acc=sess.run(accr,feed_dict=feeds_test) print("Epoch:%03d/%03d cost:%.9f train_accr:%.3f test_accr:%.3f"%(epoch,training_epochs,avg_cost,train_acc,test_acc)) print("Done")
5、训练结果
原文:https://www.cnblogs.com/XiaoGao128/p/14276060.html