1. 沿着 \(X\) 方向错切
设原始图像的任意点 \(P_0(x_0, y_0)\),沿 \(X\) 方向错切,经错切后 \(\alpha\) 角度后到新的位置 \(P(x,y)\),
\[\left\{
\begin{array}{**lr**}
x = x_0+ \beta y_0 \y = y_0
\end{array}
\right.
\]
如果错切角记为 \(\theta\),即有 \(\beta = tan\theta\) 根据上式子,整理错切前后的坐标变换为
\[\left[\begin{array}{**lr**}
x\\ y \\ 1
\end{array}\right]
=\left[\begin{array}{**lr**}
1 & tan\theta & 0\0 & 1 & 0\0 & 0 & 1
\end{array}\right]
\left[\begin{array}{**lr**}
x_0\\ y_0 \\ 1
\end{array}\right]
\]
2. 沿着 \(y\) 方向错切
设原始图像的任意点 \(P_0(x_0, y_0)\),沿 \(X\) 方向错切,经错切后 \(\alpha\) 角度后到新的位置 \(P(x,y)\),
\[\left\{
\begin{array}{**lr**}
x = x_0\y = y_0 + \alpha x_0
\end{array}
\right.
\]
如果错切角记为 \(\theta\),即有 \(\alpha = tan\theta\) 根据上式子,整理错切前后的坐标变换为
\[\left[\begin{array}{**lr**}
x\\ y \\ 1
\end{array}\right]
=\left[\begin{array}{**lr**}
1 & 0 & 0\tan\theta & 1 & 0\0 & 0 & 1
\end{array}\right]
\left[\begin{array}{**lr**}
x_0\\ y_0 \\ 1
\end{array}\right]
\]
3.4 图像几何变换——图像错切
原文:https://www.cnblogs.com/forcekeng/p/14286522.html