首页 > 其他 > 详细

tensorflow线性回归

时间:2021-01-17 21:44:32      阅读:33      评论:0      收藏:0      [点我收藏+]

一、代码显示

技术分享图片
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import numpy as np
import os
import matplotlib.pyplot as plt
os.environ["CUDA_VISIBLE_DEVICES"]="0"
learning_rate=0.01
training_epochs=1000
display_step=50
train_X=np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y=np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples=train_X.shape[0]
X=tf.placeholder("float")
Y=tf.placeholder("float")
W=tf.Variable(np.random.randn(),name="weight")
b=tf.Variable(np.random.randn(),name=bias)
pred=tf.add(tf.multiply(X,W),b)
cost=tf.reduce_sum(tf.pow(pred-Y,2))/(2*n_samples)
optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
init=tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    for epoch in range(training_epochs):
        for (x, y) in zip(train_X, train_Y):
            sess.run(optimizer, feed_dict={X: x, Y: y})
            if (epoch+1) % display_step == 0:
                c = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
                print("Epoch:" , %04d % (epoch + 1), "cost=", "{:.9f}".format(c), "W=", sess.run(W), "b=", sess.run(
                    b))
                print("Optimization Finished!")
                training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
                print("Train cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b))
                plt.plot(train_X, train_Y, ro, label=Original data)
                plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label="Fitting line")
                plt.legend()
                plt.show()
View Code

二、截图显示

技术分享图片

 

 技术分享图片

 

tensorflow线性回归

原文:https://www.cnblogs.com/hhjing/p/14290175.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!