为了分析沉默用户、本周回流用户数、流失用户、最近连续3周活跃用户、最近七天内连续三天活跃用户数,需要准备2019-02-12、2019-02-20日的数据。
dt.sh 2019-02-12
cluster.sh start
lg.sh
ods_log.sh 2019-02-12
dwd_start_log.sh 2019-02-12
dwd_base_log.sh 2019-02-12
dwd_event_log.sh 2019-02-12
dws_uv_log.sh 2019-02-12
select * from dws_uv_detail_day where dt=‘2019-02-12‘ limit 2;
dt.sh 2019-02-20
cluster.sh start
lg.sh
ods_log.sh 2019-02-20
dwd_start_log.sh 2019-02-20
dwd_base_log.sh 2019-02-20
dwd_event_log.sh 2019-02-20
dws_uv_log.sh 2019-02-20
select * from dws_uv_detail_day where dt=‘2019-02-20‘ limit 2;
沉默用户:指的是只在安装当天启动过,且启动时间是在一周前
使用日活明细表dws_uv_detail_day作为DWS层数据
drop table if exists ads_silent_count;
create external table ads_silent_count(
`dt` string COMMENT ‘统计日期‘,
`silent_count` bigint COMMENT ‘沉默设备数‘
)
row format delimited fields terminated by ‘\t‘
location ‘/warehouse/gmall/ads/ads_silent_count‘;
insert into table ads_silent_count
select
‘2019-02-20‘ dt,
count(*) silent_count
from
(
select mid_id
from dws_uv_detail_day
where dt<=‘2019-02-20‘
group by mid_id
having count(*)=1 and max(dt)<date_add(‘2019-02-20‘,-7)
) t1;
select * from ads_silent_count;
[kgg@hadoop102 bin]$ vim ads_silent_log.sh
在脚本中编写如下内容
chmod 777 ads_silent_log.sh
ads_silent_log.sh 2019-02-20
select * from ads_silent_count;
企业开发中一般在每日凌晨30分~1点
本周回流=本周活跃-本周新增-上周活跃
使用日活明细表dws_uv_detail_day作为DWS层数据
drop table if exists ads_back_count;
create external table ads_back_count(
`dt` string COMMENT ‘统计日期‘,
`wk_dt` string COMMENT ‘统计日期所在周‘,
`wastage_count` bigint COMMENT ‘回流设备数‘
)
row format delimited fields terminated by ‘\t‘
location ‘/warehouse/gmall/ads/ads_back_count‘;
insert into table ads_back_count
select
‘2019-02-20‘ dt,
concat(date_add(next_day(‘2019-02-20‘,‘MO‘),-7),‘_‘,date_add(next_day(‘2019-02-20‘,‘MO‘),-1)) wk_dt,
count(*)
from
(
select t1.mid_id
from
(
select mid_id
from dws_uv_detail_wk
where wk_dt=concat(date_add(next_day(‘2019-02-20‘,‘MO‘),-7),‘_‘,date_add(next_day(‘2019-02-20‘,‘MO‘),-1))
)t1
left join
(
select mid_id
from dws_new_mid_day
where create_date<=date_add(next_day(‘2019-02-20‘,‘MO‘),-1) and create_date>=date_add(next_day(‘2019-02-20‘,‘MO‘),-7)
)t2
on t1.mid_id=t2.mid_id
left join
(
select mid_id
from dws_uv_detail_wk
where wk_dt=concat(date_add(next_day(‘2019-02-20‘,‘MO‘),-7*2),‘_‘,date_add(next_day(‘2019-02-20‘,‘MO‘),-7-1))
)t3
on t1.mid_id=t3.mid_id
where t2.mid_id is null and t3.mid_id is null
)t4;
select * from ads_back_count;
[kgg@hadoop102 bin]$ vim ads_back_log.sh
在脚本中编写如下内容
chmod 777 ads_back_log.sh
ads_back_log.sh 2019-02-20
select * from ads_back_count;
企业开发中一般在每周一凌晨30分~1点
项目实战从0到1之hive(43)大数据项目之电商数仓(用户行为数据)(十一)
原文:https://www.cnblogs.com/huanghanyu/p/14304352.html