A peak element is an element that is strictly greater than its neighbors.
Given an integer array nums, find a peak element, and return its index. If the array contains multiple peaks, return the index to any of the peaks.
You may imagine that nums[-1] = nums[n] = -∞.
Example 1:
Input: nums = [1,2,3,1]
Output: 2
Explanation: 3 is a peak element and your function should return the index number 2.
Example 2:
Input: nums = [1,2,1,3,5,6,4]
Output: 5
Explanation: Your function can return either index number 1 where the peak element is 2, or index number 5 where the peak element is 6.
Constraints:
线性查找的极端情况是单峰且在另一端;加入方向优化之后能缓解这种情况,最差是单峰出现在最中间;
数据量再上去之和还可以考虑继续加入从中间到两端的查找,四路并行查找 —— 优点类似于钻山隧道施工的意思。
另一种解决思路是O(logN)的二分查找算法,不是很直观能想到。
为什么是到大的一段去搜,很简单的一个例子就能说明:如[1,2,3]
这种只有单峰的极端情况,只有在较大侧才能找到峰。
/*
* @lc app=leetcode id=162 lang=cpp
*
* [162] Find Peak Element
*/
// @lc code=start
class Solution {
public:
/*
// nums[i] != nums[i + 1] for all valid i.
int findPeakElement(vector<int>& nums) {
if (nums.empty()) return -1;
if (nums.size() == 1) return 0;
int i = 0, j = nums.size() - 1;
if (nums[i] > nums[i+1]) return i;
if (nums[j-1] < nums[j]) return j;
i++; j--;
while (i <= j) {
if (nums[i-1] < nums[i] && nums[i] > nums[i+1]) return i;
if (nums[j-1] < nums[j] && nums[j] > nums[j+1]) return j;
i++; j--;
}
assert(false);
return -1;
} // AC, direction-optimzed linear search, O(N)
*/
// nums[i] != nums[i + 1] for all valid i.
int findPeakElement(vector<int>& nums) {
if (nums.empty()) return -1;
if (nums.size() == 1) return 0;
int l = 0, r = nums.size() - 1;
while (l < r) {
int m = l + (r - l) / 2;
if (nums[m] < nums[m+1]) { // nums.size()==2 OK
l = m + 1;
} else {
r = m;
}
}
return l;
} // AC, binary search, O(logN)
};
// @lc code=end
[LeetCode 162.] Find Peak Element
原文:https://www.cnblogs.com/zhcpku/p/14315158.html