首页 > 其他 > 详细

机器学习06--逻辑回归

时间:2021-01-24 22:55:16      阅读:57      评论:0      收藏:0      [点我收藏+]

逻辑回归

定义

逻辑回归(Logistic Regression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的联系。由于算法的简单和高效,在实际中应用非常广泛。逻辑回归是解决二分类(两个类别之间的判断)问题的利器

原理

输入

技术分享图片

 

 逻辑回归的输入就是一个线性回归的结果(输出)。

激活函数

  • sigmoid函数

技术分享图片

  •  分析
  • 回归的结果输入到sigmoid函数当中
  • 输出结果:[0, 1]区间中的一个概率值,默认为0.5为阈值

输出结果解释

假设有两个类别A,B,并且假设我们的概率值为属于A(1)这个类别的概率值。现在有一个样本的输入到逻辑回归输出结果0.6,那么这个概率值超过0.5,意味着我们训练或者预测的结果就是A(1)类别。那么反之,如果得出结果为0.3那么,训练或者预测结果就为B(0)类别。

损失以及优化

损失

逻辑回归的损失,称之为对数似然损失,公式如下:

  • 分开类别:

技术分享图片

 技术分享图片

  • 综合完整损失函数

技术分享图片

优化

同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。

逻辑回归API

sklearn.linear_model.LogisticRegression(solver=‘liblinear‘, penalty=‘l2’, C = 1.0)

  • solver:优化求解方式(默认开源的liblinear库实现,内部使用了坐标轴下降法来迭代优化损失函数)
    • sag:根据数据集自动选择,随机平均梯度下降
  • penalty:正则化的种类
  • C:正则化力度

案例:癌症分类预测-良/恶性乳腺癌肿瘤预测

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
import pandas as pd
import numpy as np


def logisticregression():
    """
    逻辑回归进行癌症预测
    :return: None
    """
    # 1、读取数据,处理缺失值以及标准化
    column_name = [Sample code number, Clump Thickness, Uniformity of Cell Size, Uniformity of Cell Shape,
                   Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin,
                   Normal Nucleoli, Mitoses, Class]

    data = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",
                       names=column_name)

    # 删除缺失值
    data = data.replace(to_replace=?, value=np.nan)

    data = data.dropna()

    # 取出特征值
    x = data[column_name[1:10]]

    y = data[column_name[10]]

    # 分割数据集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)

    # 进行标准化
    std = StandardScaler()

    x_train = std.fit_transform(x_train)

    x_test = std.transform(x_test)

    # 使用逻辑回归
    lr = LogisticRegression()

    lr.fit(x_train, y_train)

    print("得出来的权重:", lr.coef_)

    # 预测类别
    print("预测的类别:", lr.predict(x_test))

    # 得出准确率
    print("预测的准确率:", lr.score(x_test, y_test))
    return None

if __name__ == __main__:
    logisticregression()

技术分享图片

分类的评估方法

混淆矩阵

在分类任务下,预测结果(Predicted Condition)与正确标记(True Condition)之间存在四种不同的组合,构成混淆矩阵(适用于多分类)

技术分享图片

精确率与召回率

  • 精确率:预测结果为正例样本中真实为正例的比例(了解)

技术分享图片

  • 召回率:真实为正例的样本中预测结果为正例的比例(查的全,对正样本的区分能力)

技术分享图片

F1-score,反映了模型的稳健型

技术分享图片

分类评估报告API

sklearn.metrics.classification_report(y_true, y_pred, labels=[], target_names=None )

  • y_true:真实目标值
  • y_pred:估计器预测目标值
  • labels:指定类别对应的数字
  • target_names:目标类别名称
  • return:每个类别精确率与召回率
    print("精确率和召回率为:", classification_report(y_test, lr.predict(x_test), labels=[2, 4], target_names=[良性, 恶性]))

技术分享图片

ROC曲线与AUC指标

TPR与FPR

  • TPR = TP / (TP + FN)
    • 所有真实类别为1的样本中,预测类别为1的比例
  • FPR = FP / (FP + FN)
    • 所有真实类别为0的样本中,预测类别为1的比例

ROC曲线

  • ROC曲线的横轴就是FPRate,纵轴就是TPRate,当二者相等时,表示的意义则是:对于不论真实类别是1还是0的样本,分类器预测为1的概率是相等的,此时AUC为0.5

技术分享图片

AUC指标

  • AUC的概率意义是随机取一对正负样本,正样本得分大于负样本的概率
  • AUC的最小值为0.5,最大值为1,取值越高越好
  • AUC=1,完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。
  • 0.5<AUC<1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。

最终AUC的范围在[0.5, 1]之间,并且越接近1越好

AUC计算API

  • from sklearn.metrics import roc_auc_score
    • sklearn.metrics.roc_auc_score(y_true, y_score)
      • 计算ROC曲线面积,即AUC值
      • y_true:每个样本的真实类别,必须为0(反例),1(正例)标记
      • y_score:每个样本预测的概率值
# 0.5~1之间,越接近于1约好
y_test = np.where(y_test > 2.5, 1, 0)

print("AUC指标:", roc_auc_score(y_test, lr.predict(x_test)))

技术分享图片

总结

  • AUC只能用来评价二分类
  • AUC非常适合评价样本不平衡中的分类器性能

机器学习06--逻辑回归

原文:https://www.cnblogs.com/MoooJL/p/14322442.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!