K近邻法(K-nearest neighbors,KNN)既可以分类,也可以回归。
KNN做回归和分类的区别在于最后预测时的决策方式。
KNN做分类时,一般用多数表决法: 采用车辆不同特征值之间的距离方法进行分类
KNN做回归时,一般用平均法。
基本概念如下:存在一个样本数据集合,所有特征属性已知,并且样本集中每个对象都已知所属分类。对不知道分类的待测对象,将待测对象的每个特征属性与样本集中数据对应的特征属性进行比较,然后算法提取样本最相似对象(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的对象数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后根据这k个数据的特征和属性,判断待测数据的分类
KNN算法主要考虑:k值的选取,距离度量方式,分类决策规则。
1) k值的选取。在应用中,k值一般选择一个比较小的值,一般选用交叉验证来取最优的k值
当K值较小,训练误差减小,泛化误差增大,模型复杂容易过拟合;
当K值较大,泛化误差减小,训练误差增大,模型简单使预测发生错误(一个极端,K等于样本数m,则完全没有分类,此时无论测试集是什么,结果都属于训练集中最多的类)
2)距离度量。Lp距离:误差绝对值p次方求和再求p次根。欧式距离:p=2的Lp距离。曼哈顿距离:p=1的Lp距离。p为无穷大时,Lp距离为各个维度上距离的最大值
3)分类决策规则。也就是如何根据k个最近邻决定待测对象的分类。k最近邻的分类决策规则一般选用多数表决
# -*- coding: UTF-8 -*- import numpy as np import operator import collections """ 函数说明:创建数据集 Parameters: 无 Returns: group - 数据集 labels - 分类标签 """ def createDataSet(): #四组二维特征 group = np.array([[1,101],[5,89],[108,5],[115,8]]) #四组特征的标签 labels = [‘爱情片‘,‘爱情片‘,‘动作片‘,‘动作片‘] return group, labels """ 函数说明:kNN算法,分类器 Parameters: inX - 用于分类的数据(测试集) dataSet - 用于训练的数据(训练集) labes - 分类标签 k - kNN算法参数,选择距离最小的k个点 Returns: sortedClassCount[0][0] - 分类结果 """ def classify0(inx, dataset, labels, k): # 计算距离 dist = np.sum((inx - dataset)**2, axis=1)**0.5 # k个最近的标签 k_labels = [labels[index] for index in dist.argsort()[0 : k]] # 出现次数最多的标签即为最终类别 label = collections.Counter(k_labels).most_common(1)[0][0] return label if __name__ == ‘__main__‘: #创建数据集 group, labels = createDataSet() #测试集 test = [101,20] #kNN分类 test_class = classify0(test, group, labels, 3) #打印分类结果 print(test_class)
# -*- coding: UTF-8 -*- import numpy as np """ 函数说明:打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力 Parameters: filename - 文件名 Returns: returnMat - 特征矩阵 classLabelVector - 分类Label向量 """ def file2matrix(filename): #打开文件 fr = open(filename) #读取文件所有内容 arrayOLines = fr.readlines() #得到文件行数 numberOfLines = len(arrayOLines) #返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列 returnMat = np.zeros((numberOfLines,3)) #返回的分类标签向量 classLabelVector = [] #行的索引值 index = 0 for line in arrayOLines: #s.strip(rm),当rm空时,默认删除空白符(包括‘\n‘,‘\r‘,‘\t‘,‘ ‘) line = line.strip() #使用s.split(str="",num=string,cout(str))将字符串根据‘\t‘分隔符进行切片。 listFromLine = line.split(‘\t‘) #将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵 returnMat[index,:] = listFromLine[0:3] #根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力 if listFromLine[-1] == ‘didntLike‘: classLabelVector.append(1) elif listFromLine[-1] == ‘smallDoses‘: classLabelVector.append(2) elif listFromLine[-1] == ‘largeDoses‘: classLabelVector.append(3) index += 1 return returnMat, classLabelVector """ 函数说明:main函数 Parameters: 无 Returns: 无 """ if __name__ == ‘__main__‘: #打开的文件名 filename = "datingTestSet.txt" #打开并处理数据 datingDataMat, datingLabels = file2matrix(filename) print(datingDataMat) print(datingLabels)
""" 函数说明:可视化数据 Parameters: datingDataMat - 特征矩阵 datingLabels - 分类Label Returns: 无 """ def showdatas(datingDataMat, datingLabels): #设置汉字格式 font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14) #将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8) #当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域 fig, axs = plt.subplots(nrows=2, ncols=2,sharex=False, sharey=False, figsize=(13,8)) numberOfLabels = len(datingLabels) LabelsColors = [] for i in datingLabels: if i == 1: LabelsColors.append(‘black‘) if i == 2: LabelsColors.append(‘orange‘) if i == 3: LabelsColors.append(‘red‘) #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5 axs[0][0].scatter(x=datingDataMat[:,0], y=datingDataMat[:,1], color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs0_title_text = axs[0][0].set_title(u‘每年获得的飞行常客里程数与玩视频游戏所消耗时间占比‘,FontProperties=font) axs0_xlabel_text = axs[0][0].set_xlabel(u‘每年获得的飞行常客里程数‘,FontProperties=font) axs0_ylabel_text = axs[0][0].set_ylabel(u‘玩视频游戏所消耗时间占‘,FontProperties=font) plt.setp(axs0_title_text, size=9, weight=‘bold‘, color=‘red‘) plt.setp(axs0_xlabel_text, size=7, weight=‘bold‘, color=‘black‘) plt.setp(axs0_ylabel_text, size=7, weight=‘bold‘, color=‘black‘) #画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5 axs[0][1].scatter(x=datingDataMat[:,0], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs1_title_text = axs[0][1].set_title(u‘每年获得的飞行常客里程数与每周消费的冰激淋公升数‘,FontProperties=font) axs1_xlabel_text = axs[0][1].set_xlabel(u‘每年获得的飞行常客里程数‘,FontProperties=font) axs1_ylabel_text = axs[0][1].set_ylabel(u‘每周消费的冰激淋公升数‘,FontProperties=font) plt.setp(axs1_title_text, size=9, weight=‘bold‘, color=‘red‘) plt.setp(axs1_xlabel_text, size=7, weight=‘bold‘, color=‘black‘) plt.setp(axs1_ylabel_text, size=7, weight=‘bold‘, color=‘black‘) #画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5 axs[1][0].scatter(x=datingDataMat[:,1], y=datingDataMat[:,2], color=LabelsColors,s=15, alpha=.5) #设置标题,x轴label,y轴label axs2_title_text = axs[1][0].set_title(u‘玩视频游戏所消耗时间占比与每周消费的冰激淋公升数‘,FontProperties=font) axs2_xlabel_text = axs[1][0].set_xlabel(u‘玩视频游戏所消耗时间占比‘,FontProperties=font) axs2_ylabel_text = axs[1][0].set_ylabel(u‘每周消费的冰激淋公升数‘,FontProperties=font) plt.setp(axs2_title_text, size=9, weight=‘bold‘, color=‘red‘) plt.setp(axs2_xlabel_text, size=7, weight=‘bold‘, color=‘black‘) plt.setp(axs2_ylabel_text, size=7, weight=‘bold‘, color=‘black‘) #设置图例 didntLike = mlines.Line2D([], [], color=‘black‘, marker=‘.‘, markersize=6, label=‘didntLike‘) smallDoses = mlines.Line2D([], [], color=‘orange‘, marker=‘.‘, markersize=6, label=‘smallDoses‘) largeDoses = mlines.Line2D([], [], color=‘red‘, marker=‘.‘, markersize=6, label=‘largeDoses‘) #添加图例 axs[0][0].legend(handles=[didntLike,smallDoses,largeDoses]) axs[0][1].legend(handles=[didntLike,smallDoses,largeDoses]) axs[1][0].legend(handles=[didntLike,smallDoses,largeDoses]) #显示图片 plt.show()
""" 函数说明:对数据进行归一化 Parameters: dataSet - 特征矩阵 Returns: normDataSet - 归一化后的特征矩阵 ranges - 数据范围 minVals - 数据最小值 """ def autoNorm(dataSet): #获得数据的最小值 minVals = dataSet.min(0) maxVals = dataSet.max(0) #最大值和最小值的范围 ranges = maxVals - minVals #shape(dataSet)返回dataSet的矩阵行列数 normDataSet = np.zeros(np.shape(dataSet)) #返回dataSet的行数 m = dataSet.shape[0] #原始值减去最小值 normDataSet = dataSet - np.tile(minVals, (m, 1)) #除以最大和最小值的差,得到归一化数据 normDataSet = normDataSet / np.tile(ranges, (m, 1)) #返回归一化数据结果,数据范围,最小值 return normDataSet, ranges, minVals
# -*- coding: UTF-8 -*- import numpy as np import operator """ 函数说明:kNN算法,分类器 Parameters: inX - 用于分类的数据(测试集) dataSet - 用于训练的数据(训练集) labes - 分类标签 k - kNN算法参数,选择距离最小的k个点 Returns: sortedClassCount[0][0] - 分类结果 """ def classify0(inX, dataSet, labels, k): #numpy函数shape[0]返回dataSet的行数 dataSetSize = dataSet.shape[0] #在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向) diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet #二维特征相减后平方 sqDiffMat = diffMat**2 #sum()所有元素相加,sum(0)列相加,sum(1)行相加 sqDistances = sqDiffMat.sum(axis=1) #开方,计算出距离 distances = sqDistances**0.5 #返回distances中元素从小到大排序后的索引值 sortedDistIndices = distances.argsort() #定一个记录类别次数的字典 classCount = {} for i in range(k): #取出前k个元素的类别 voteIlabel = labels[sortedDistIndices[i]] #dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。 #计算类别次数 classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #python3中用items()替换python2中的iteritems() #key=operator.itemgetter(1)根据字典的值进行排序 #key=operator.itemgetter(0)根据字典的键进行排序 #reverse降序排序字典 sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True) #返回次数最多的类别,即所要分类的类别 return sortedClassCount[0][0] """ 函数说明:分类器测试函数 Parameters: 无 Returns: normDataSet - 归一化后的特征矩阵 ranges - 数据范围 minVals - 数据最小值 """ def datingClassTest(): #打开的文件名 filename = "datingTestSet.txt" #将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中 datingDataMat, datingLabels = file2matrix(filename) #取所有数据的百分之十 hoRatio = 0.10 #数据归一化,返回归一化后的矩阵,数据范围,数据最小值 normMat, ranges, minVals = autoNorm(datingDataMat) #获得normMat的行数 m = normMat.shape[0] #百分之十的测试数据的个数 numTestVecs = int(m * hoRatio) #分类错误计数 errorCount = 0.0 for i in range(numTestVecs): #前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集 classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:], datingLabels[numTestVecs:m], 4) print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i])) if classifierResult != datingLabels[i]: errorCount += 1.0 print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))
""" 函数说明:通过输入一个人的三维特征,进行分类输出 Parameters: 无 Returns: 无 """ def classifyPerson(): #输出结果 resultList = [‘讨厌‘,‘有些喜欢‘,‘非常喜欢‘] #三维特征用户输入 precentTats = float(input("玩视频游戏所耗时间百分比:")) ffMiles = float(input("每年获得的飞行常客里程数:")) iceCream = float(input("每周消费的冰激淋公升数:")) #打开的文件名 filename = "datingTestSet.txt" #打开并处理数据 datingDataMat, datingLabels = file2matrix(filename) #训练集归一化 normMat, ranges, minVals = autoNorm(datingDataMat) #生成NumPy数组,测试集 inArr = np.array([ffMiles, precentTats, iceCream]) #测试集归一化 norminArr = (inArr - minVals) / ranges #返回分类结果 classifierResult = classify0(norminArr, normMat, datingLabels, 3) #打印结果 print("你可能%s这个人" % (resultList[classifierResult-1]))
5.2.1
5.2.2 KNeighborsClassifier函数8个参数
5.2.3 实例
# -*- coding: UTF-8 -*- import numpy as np import operator from os import listdir from sklearn.neighbors import KNeighborsClassifier as kNN """ 函数说明:将32x32的二进制图像转换为1x1024向量。 Parameters: filename - 文件名 Returns: returnVect - 返回的二进制图像的1x1024向量 """ def img2vector(filename): #创建1x1024零向量 returnVect = np.zeros((1, 1024)) #打开文件 fr = open(filename) #按行读取 for i in range(32): #读一行数据 lineStr = fr.readline() #每一行的前32个元素依次添加到returnVect中 for j in range(32): returnVect[0, 32*i+j] = int(lineStr[j]) #返回转换后的1x1024向量 return returnVect """ 函数说明:手写数字分类测试 Parameters: 无 Returns: 无 """ def handwritingClassTest(): #测试集的Labels hwLabels = [] #返回trainingDigits目录下的文件名 trainingFileList = listdir(‘trainingDigits‘) #返回文件夹下文件的个数 m = len(trainingFileList) #初始化训练的Mat矩阵,测试集 trainingMat = np.zeros((m, 1024)) #从文件名中解析出训练集的类别 for i in range(m): #获得文件的名字 fileNameStr = trainingFileList[i] #获得分类的数字 classNumber = int(fileNameStr.split(‘_‘)[0]) #将获得的类别添加到hwLabels中 hwLabels.append(classNumber) #将每一个文件的1x1024数据存储到trainingMat矩阵中 trainingMat[i,:] = img2vector(‘trainingDigits/%s‘ % (fileNameStr)) #构建kNN分类器 neigh = kNN(n_neighbors = 3, algorithm = ‘auto‘) #拟合模型, trainingMat为训练矩阵,hwLabels为对应的标签 neigh.fit(trainingMat, hwLabels) #返回testDigits目录下的文件列表 testFileList = listdir(‘testDigits‘) #错误检测计数 errorCount = 0.0 #测试数据的数量 mTest = len(testFileList) #从文件中解析出测试集的类别并进行分类测试 for i in range(mTest): #获得文件的名字 fileNameStr = testFileList[i] #获得分类的数字 classNumber = int(fileNameStr.split(‘_‘)[0]) #获得测试集的1x1024向量,用于训练 vectorUnderTest = img2vector(‘testDigits/%s‘ % (fileNameStr)) #获得预测结果 # classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) classifierResult = neigh.predict(vectorUnderTest) print("分类返回结果为%d\t真实结果为%d" % (classifierResult, classNumber)) if(classifierResult != classNumber): errorCount += 1.0 print("总共错了%d个数据\n错误率为%f%%" % (errorCount, errorCount/mTest * 100)) """ 函数说明:main函数 Parameters: 无 Returns: 无 """ if __name__ == ‘__main__‘: handwritingClassTest()
原文:https://www.cnblogs.com/aitree/p/14331446.html