首页 > 编程语言 > 详细

基于python的elasticsearch的应用实战(一)

时间:2021-01-27 22:20:53      阅读:27      评论:0      收藏:0      [点我收藏+]

本篇是基于我个人在实训过程中所运用到的一些关于Es的知识的讲解,包括基本的插入,删除等等操作
拉到最下面有全部代码

首先要在本机环境安装es,具体安装教程可见其他博文,本处不多赘述。本人安装的是7.9.3版本,因为涉及到了ik分词器的使用,而ik分词器的版本需要与Es的版本相对应,所以选择了当下最新的7.9.3版本进行安装
然后导入相关的包

import csv #从csv导入内容到es中
from elasticsearch import Elasticsearch #基本的导包
from elasticsearch.helpers import bulk #使用bulk导入信息至es中需要

导包结束后,接下来是es工具类的实现,本处使用到的csv的信息每行共有五列,具体讲解请见代码注释
代码如下:

class ElasticObj:
    def __init__(self, index_name,index_type,ip ="127.0.0.1"): # 初始化
        self.index_name = index_name
        self.index_type = index_type
        self.es = Elasticsearch([ip], timeout = 60)
        
    def create_index(self,index_name="ott",index_type="_doc"): # 创建映射
        _index_mappings = {
            "mappings": {
                "properties": { #这里的内容对应的是想要在es中存储的格式,本处共有五列,分别对应的是标题,时间,链接,内容,情感
                    "title": {
                        "type": "text",
                    },
                    "time": {
                        "type": "date", # 格式为时间
                        "format":"yyyy-MM-dd HH:mm:ss" #format可以控制导入的时间的格式,需要从csv中导入的信息格式一致,否则会报错
                    },
                    "url": {
                        "type": "text"
                    },
                    "content": {
                        "type": "text",
                        "analyzer": "ik_smart", # 本处使用的是ik_smart模式,会将文本做最粗粒度的拆分,如果需要更细粒度的拆分可以使用ik_max_word模式
                        "search_analyzer": "ik_smart",
                        "fielddata":True, #聚类查询,默认是false
                    },
                    "sentiment":{
                        "type":"text",
                    }
                }
            }
        }
        if self.es.indices.exists(index=self.index_name) is not True: 
            res = self.es.indices.create(index=self.index_name, body=_index_mappings)
            print(res)
            
    def Get_data(self, csvfile): # 从csv中导入数据
        f = open(csvfile, ‘r‘, encoding=‘utf-8‘) #注意编码
        csvreader = csv.reader(f)
        l = list(csvreader) #用列表存储
        return l
    
    def Index_Data_FromCSV(self, csvfile): # 从csv读取数据存到es中(bulk)
        l = self.Get_data(csvfile)
        ACTIONS = []
        index = 0
        for line in l:
            index = index + 1
            if index % 5000 == 0: # 分批次处理,每5000打印一次,并且清空一次ACTIONS, 加快插入速度
                success, _ = bulk(self.es, ACTIONS, index=self.index_name)
                ACTIONS = []
                print(‘Performed %d actions‘ % success)
            if index > 1:
                action = {
                    "_index": self.index_name,
                    "_type":"_doc",
                    "_id": index,
                    "_source": {
                        "title": line[0],
                        "time":line[1],
                        "url": line[2],
                        "content": line[3],
                        "sentiment": line[4]
                    }
                }
                ACTIONS.append(action)
        if (len(ACTIONS) > 0):
            bulk(self.es, ACTIONS, index=self.index_name)

            
    def Get_Data_By_Body(self, stype, where, word): # 基础搜索
        doc = {
            "query": {
                stype: {
                    where:word, #查找指定词汇 ,可以根据自己实际情况发生变化
                }
            }
        }
        _searched = self.es.search(index=self.index_name, doc_type=self.index_type, body=doc,params={"size":20})   #这里的20指的是评分最高的前20条 可以根据实际情况调整
        return _searched[‘hits‘][‘hits‘] 
    
    def Get_Data_By_Body1(self, stype, where, word, date1, date2): # 进阶搜素1
        doc = {
            "query": {
                stype: {
                    where:word,
                },
                "range":{ #此时的搜索内容会进行进一步的处理,本处是筛选指定时间段内的相关内容
                    "time":{
                            "from": date1,
                            "to":date2
                    }
                }
            }
        }
        _searched = self.es.search(index=self.index_name, doc_type=self.index_type, body=doc,params={"size":20})   
        return _searched[‘hits‘][‘hits‘]
        
    def Delete_of_all(self): # 清空es内存储的所有内容
        body = {
            "query":{
                "match_all":{}
            }
        }
        res = self.es.search(index = self.index_name, body = body)
        self.es.delete_by_query(index = self.index_name, body = body)
        print("清空完成")
        
    def Delete_Index(self, my_index): #清空索引
        self.es.indices.delete(index=my_index, ignore=[400, 404])
    
    def Get_data_time(self, date1, date2, word): #每天的关键词的情感趋势
        doc = {
            "query":{
                "bool":{
                    "must":[{
                        "range":{
                            "time":{
                                "from": date1,
                                "to":date2
                            }
                        }
                    },
                    {
                        "match":{
                            "content":word,
                        }
                    }]
                }
            }
        }
        _searched = self.es.search(index=self.index_name, doc_type=self.index_type, body=doc,params={"size":200})   
        return _searched[‘hits‘][‘hits‘]
    
    def Hot_words_time(self, date1, date2): # 根据日期挑选热词
        doc = {
            "aggs":{
            "date_ranges":{
                "range":{
                    "field":"time",
                    "ranges":[
                        {
                            "from":date1,
                            "to":date2
                        },
                    ]},
                    "aggs":{
                        "content":{
                            "terms":{
                                "field":"content",
                                "size":50,
                                "order":[{"_count":"desc"}] #降序
                            }
                        }
                    }
                }
            }
        }
        _searched = self.es.search(index=self.index_name, doc_type=self.index_type, body=doc)   
        return _searched[‘aggregations‘]

下面是对于es类的一些功能的基本调用
首先是创建索引,索引的名称为ott,索引类型为_doc,注意如果需要使用ik分词器的功能,索引类型一定要是_doc

obj = ElasticObj("ott", "_doc") #此时创建的索引不可使用ik分词器,因为不是按照mappings创建的
obj.Delete_Index("ott") #删除
obj.create_index(index_name="ott",index_type="_doc") #创建新的索引

清空全部数据
如果原索引下有废弃数据,可以先清空

#obj.Delete_of_all()

将csv的文件导入es

#csvfile = ‘G:/大学课程/大三上/实训一/代码/datasets/data.csv‘
#obj.Index_Data_FromCSV(csvfile)

根据指定词查找相关信息

data = obj.Get_Data_By_Body("match", "content", "王一博") 从左到右分别是匹配模式,匹配的信息内容,这里是content,然后查询词为王一博(捂脸)
for hit in data:
    print(hit) 具体想要打印的东西可以自行调整,也可以在上面的return调整

打印出来的样例展示,我们可以看到打印的排序是按照score的从大到小来的

{‘_index‘: ‘ott‘, ‘_type‘: ‘_doc‘, ‘_id‘: ‘19345‘, ‘_score‘: 15.318817, ‘_source‘: {‘title‘: ‘4464409064170710‘, ‘time‘: ‘2020-01-24 23:58:00‘, ‘url‘: "[‘https://wx1.sinaimg.cn/large/48f988e6gy1gb6zfzddjzj20zk0k00ta.jpg‘]", ‘content‘: ‘新年快乐,愿大家健健康康//@王一博粉丝后援会:\ue627王一博wyb#正能量艺人王一博#防控疫情,从你我做起!@UNIQ-王一博//@王一博粉丝后援会:\ue627王一博wyb#正能量艺人王一博#防控疫情,从你我做起!@UNIQ-王一博‘, ‘sentiment‘: ‘1‘}}
{‘_index‘: ‘ott‘, ‘_type‘: ‘_doc‘, ‘_id‘: ‘45523‘, ‘_score‘: 15.318817, ‘_source‘: {‘title‘: ‘4464409064170710‘, ‘time‘: ‘2020-01-24 23:58:00‘, ‘url‘: "[‘https://wx1.sinaimg.cn/large/48f988e6gy1gb6zfzddjzj20zk0k00ta.jpg‘]", ‘content‘: ‘新年快乐,愿大家健健康康//@王一博粉丝后援会:\ue627王一博wyb#正能量艺人王一博#防控疫情,从你我做起!@UNIQ-王一博//@王一博粉丝后援会:\ue627王一博wyb#正能量艺人王一博#防控疫情,从你我做起!@UNIQ-王一博‘, ‘sentiment‘: ‘1‘}}
{‘_index‘: ‘ott‘, ‘_type‘: ‘_doc‘, ‘_id‘: ‘11204‘, ‘_score‘: 15.241138, ‘_source‘: {‘title‘: ‘4470884200733640‘, ‘time‘: ‘2020-02-11 20:48:00‘, ‘url‘: "[‘https://wx3.sinaimg.cn/orj480/007QLKuBgy1gbspsf5v11j31hc0u07wh.jpg‘]", ‘content‘: ‘//@王一博数据组:\ue627王一博wyb#天天向上王一博#听妈妈的话,坚持增强抵抗力!一博@UNIQ-王一博你好可爱!‘, ‘sentiment‘: ‘1‘}}

根据日期和指定词查找,注意左边是比较靠前的日期(因为对应代码中的range的 from 和 to)

data = obj.Get_data_time("2020-01-01 00:00:00", "2020-01-03 00:00:00", "王一博")
for hit in data:
    print(hit)

可以看出来的确在指定日期区间内了(展示部分)

{‘_index‘: ‘ott‘, ‘_type‘: ‘_doc‘, ‘_id‘: ‘88326‘, ‘_score‘: 15.336415, ‘_source‘: {‘title‘: ‘4455879775049460‘, ‘time‘: ‘2020-01-01 11:06:00‘, ‘url‘: ‘[]‘, ‘content‘: ‘#王一博丸子头#惊喜到呼吸困难\ue627王一博?‘, ‘sentiment‘: ‘1‘}}
{‘_index‘: ‘ott‘, ‘_type‘: ‘_doc‘, ‘_id‘: ‘15587‘, ‘_score‘: 13.824566, ‘_source‘: {‘title‘: ‘4456435633056360‘, ‘time‘: ‘2020-01-02 23:55:00‘, ‘url‘: "[‘https://ww1.sinaimg.cn/orj360/007zChz8gy1gadocwxb7wj30u0190npd.jpg‘, ‘https://ww4.sinaimg.cn/orj360/007zChz8gy1gadocxbosdj30u0190qv5.jpg‘]", ‘content‘: ‘#王一博唱囧妈#//@UNIQ-王一博:治愈囧途,音乐相伴,大年初一看《囧妈》!给您比个心???//@徐峥:#王一博唱囧妈#够不够惊喜?够不够意外?掌声欢迎我们的新乘客一博!大年初一,比个心~‘, ‘sentiment‘: ‘1‘}}
{‘_index‘: ‘ott‘, ‘_type‘: ‘_doc‘, ‘_id‘: ‘41766‘, ‘_score‘: 13.824566, ‘_source‘: {‘title‘: ‘4456435633056360‘, ‘time‘: ‘2020-01-02 23:55:00‘, ‘url‘: "[‘https://ww1.sinaimg.cn/orj360/007zChz8gy1gadocwxb7wj30u0190npd.jpg‘, ‘https://ww4.sinaimg.cn/orj360/007zChz8gy1gadocxbosdj30u0190qv5.jpg‘]", ‘content‘: ‘#王一博唱囧妈#//@UNIQ-王一博:治愈囧途,音乐相伴,大年初一看《囧妈》!给您比个心???//@徐峥:#王一博唱囧妈#够不够惊喜?够不够意外?掌声欢迎我们的新乘客一博!大年初一,比个心~‘, ‘sentiment‘: ‘1‘}}
{‘_index‘: ‘ott‘, ‘_type‘: ‘_doc‘, ‘_id‘: ‘91035‘, ‘_score‘: 11.179046, ‘_source‘: {‘title‘: ‘4455719112023000‘, ‘time‘: ‘2020-01-01 00:28:00‘, ‘url‘: ‘[]‘, ‘content‘: ‘#2020新年第一个愿望#中考考好加油!!!!天天开心家里人身体健康,去见王一博!!!!天天开心天天开心天天开心!!!?‘, ‘sentiment‘: ‘1‘}}

显示词频
指定时间段内的哪个词出现的频率最高,key是词,doc_count是出现次数,本处由高到底排列

x = obj.Hot_words_time("2020-01-01 00:00:00", "2020-01-14 00:00:00")
print(x[‘date_ranges‘][‘buckets‘][0][‘content‘][‘buckets‘])

[{‘key‘: ‘微博‘, ‘doc_count‘: 1186}, {‘key‘: ‘视频‘, ‘doc_count‘: 772}, {‘key‘: ‘1月‘, ‘doc_count‘: 761}, {‘key‘: ‘2020年‘, ‘doc_count‘: 588}, {‘key‘: ‘真的‘, ‘doc_count‘: 573}, {‘key‘: ‘致敬‘, ‘doc_count‘: 569}, {‘key‘: ‘治愈‘, ‘doc_count‘: 557}, {‘key‘: ‘武汉‘, ‘doc_count‘: 551}, {‘key‘: ‘中国‘, ‘doc_count‘: 511}, {‘key‘: ‘2020‘, ‘doc_count‘: 495}, {‘key‘: ‘医院‘, ‘doc_count‘: 419}, {‘key‘: ‘的人‘, ‘doc_count‘: 414}, {‘key‘: ‘生活‘, ‘doc_count‘: 410}, {‘key‘: ‘时‘, ‘doc_count‘: 403}, {‘key‘: ‘希望‘, ‘doc_count‘: 387}, {‘key‘: ‘隔离‘, ‘doc_count‘: 380}, {‘key‘: ‘患者‘, ‘doc_count‘: 378}, {‘key‘: ‘说‘, ‘doc_count‘: 377}, {‘key‘: ‘中‘, ‘doc_count‘: 372}, {‘key‘: ‘太‘, ‘doc_count‘: 370}, {‘key‘: ‘咳嗽‘, ‘doc_count‘: 348}, {‘key‘: ‘健康‘, ‘doc_count‘: 344}, {‘key‘: ‘治疗‘, ‘doc_count‘: 344}, {‘key‘: ‘感染‘, ‘doc_count‘: 339}, {‘key‘: ‘酒精‘, ‘doc_count‘: 339}, {‘key‘: ‘肺炎‘, ‘doc_count‘: 338}, {‘key‘: ‘消毒‘, ‘doc_count‘: 335}, {‘key‘: ‘发‘, ‘doc_count‘: 330}, {‘key‘: ‘肖‘, ‘doc_count‘: 330}, {‘key‘: ‘战‘, ‘doc_count‘: 326}, {‘key‘: ‘券‘, ‘doc_count‘: 324}, {‘key‘: ‘都是‘, ‘doc_count‘: 317}, {‘key‘: ‘时间‘, ‘doc_count‘: 310}, {‘key‘: ‘拍‘, ‘doc_count‘: 304}, {‘key‘: ‘前‘, ‘doc_count‘: 300}, {‘key‘: ‘医生‘, ‘doc_count‘: 298}, {‘key‘: ‘基层‘, ‘doc_count‘: 296}, {‘key‘: ‘转发‘, ‘doc_count‘: 295}, {‘key‘: ‘工作‘, ‘doc_count‘: 294}, {‘key‘: ‘疫苗‘, ‘doc_count‘: 294}, {‘key‘: ‘赞‘, ‘doc_count‘: 292}, {‘key‘: ‘心‘, ‘doc_count‘: 290}, {‘key‘: ‘捐赠‘, ‘doc_count‘: 290}, {‘key‘: ‘病毒‘, ‘doc_count‘: 288}, {‘key‘: ‘2019年‘, ‘doc_count‘: 285}, {‘key‘: ‘超‘, ‘doc_count‘: 285}, {‘key‘: ‘里‘, ‘doc_count‘: 284}, {‘key‘: ‘感觉‘, ‘doc_count‘: 274}, {‘key‘: ‘防控‘, ‘doc_count‘: 274}, {‘key‘: ‘人的‘, ‘doc_count‘: 272}]

指定时间段内的情感指数平均值

y = obj.Get_data_time("2020-01-01 00:00:00", "2020-01-28 00:00:00", "杨洋")
ssum = 0

for i in y:
    if i[‘_source‘][‘sentiment‘] not in [‘1‘, ‘-1‘, ‘0‘]:
        continue
    ssum += int(i[‘_source‘][‘sentiment‘])
    
print(ssum / len(y))
import datetime
import time
import matplotlib.pyplot as plt
import locale

plt.rcParams[‘font.sans-serif‘]=[‘SimHei‘]  # 用来正常显示中文标签  
plt.rcParams[‘axes.unicode_minus‘]=False  # 用来正常显示负号
# 可以用中文格式化
locale.setlocale(locale.LC_CTYPE, ‘chinese‘)


def Get_time_every(begin_date_str, end_date_str):
        date_list = []
        begin_date = datetime.datetime.strptime(begin_date_str, "%Y-%m-%d %H:%M:%S")
        end_date = datetime.datetime.strptime(end_date_str, "%Y-%m-%d %H:%M:%S")
        while begin_date <= end_date:
            date_str = begin_date.strftime("%Y-%m-%d %H:%M:%S")
            date_list.append(date_str)
            begin_date += datetime.timedelta(days=1) 每隔一天计算一次情感均值
        return date_list
    
x = Get_time_every("2020-01-01 00:00:00", "2020-02-28 00:00:00")

def draw_sentiment(date_list, word): #画图
    date_every_sentiment = []
    date_list_new = []
    for i in range(len(date_list) - 1):
        data_sentiment = obj.Get_data_time(date_list[i],  date_list[i + 1], word)
        if len(data_sentiment) == 0:
             continue
        else:
            date_list_new.append(date_list[i])
            ssum = 0
            for j in data_sentiment:
                if j[‘_source‘][‘sentiment‘] not in [‘1‘, ‘0‘, ‘-1‘]:
                    continue
                ssum += int(j[‘_source‘][‘sentiment‘])
            if (ssum / len(data_sentiment)) < 0.2:
                print(date_list[i] , word)
            date_every_sentiment.append(ssum / len(data_sentiment))
    
    plt.figure(figsize=(15,5))
    plt.plot(date_list_new, date_every_sentiment)
    plt.ylim(-0.5, 1.5)
    plt.xticks(rotation=30)
    plt.show()
    
    return [date_list_new, date_every_sentiment]

    
[date_list, date_every_sentiment] = draw_sentiment(x, "发烧")

技术分享图片

全部代码整合如下(在上面的基础上有所增加)

import csv
from elasticsearch import Elasticsearch
from elasticsearch.helpers import bulk


class ElasticObj:
    def __init__(self, index_name, index_type, ip="127.0.0.1"):  # 初始化
        self.index_name = index_name
        self.index_type = index_type
        self.es = Elasticsearch([ip], timeout=60)

    def create_index(self, index_name="ott", index_type="_doc"):
        # 创建映射
        _index_mappings = {
            "mappings": {
                "properties": {
                    "title": {
                        "type": "text",
                    },
                    "time": {
                        "type": "date",
                        "format": "yyyy-MM-dd HH:mm:ss"
                    },
                    "url": {
                        "type": "text"
                    },
                    "content": {
                        "type": "text",
                        "analyzer": "ik_smart",
                        "search_analyzer": "ik_smart",
                        "fielddata": True,
                    },
                    "sentiment": {
                        "type": "text",
                    }
                }
            }
        }
        if self.es.indices.exists(index=self.index_name) is not True:
            res = self.es.indices.create(index=self.index_name, body=_index_mappings)
            print(res)

    def Get_data(self, csvfile):
        f = open(csvfile, ‘r‘, encoding=‘utf-8‘)
        csvreader = csv.reader(f)
        l = list(csvreader)
        return l

    def Index_Data_FromCSV(self, csvfile):  # 从csv读取数据存到es中(bulk)
        l = self.Get_data(csvfile)
        ACTIONS = []
        index = 0
        for line in l:
            index = index + 1
            if index % 5000 == 0:  # 分批次处理
                success, _ = bulk(self.es, ACTIONS, index=self.index_name)
                ACTIONS = []
                print(‘Performed %d actions‘ % success)
            if index > 1:
                action = {
                    "_index": self.index_name,
                    "_type": "_doc",
                    "_id": index,
                    "_source": {
                        "title": line[0],
                        "time": line[1],
                        "url": line[2],
                        "content": line[3],
                        "sentiment": line[4]
                    }
                }
                ACTIONS.append(action)
        if (len(ACTIONS) > 0):
            bulk(self.es, ACTIONS, index=self.index_name)

    def Get_Data_By_Body(self, stype, where, word):  # 搜索
        doc = {
            "query": {
                stype: {
                    where: word,
                }
            }
        }
        _searched = self.es.search(index=self.index_name, doc_type=self.index_type, body=doc, params={"size": 1000})
        return _searched[‘hits‘][‘hits‘]

    def Delete_of_all(self):  # 清空
        body = {
            "query": {
                "match_all": {}
            }
        }
        res = self.es.search(index=self.index_name, body=body)
        self.es.delete_by_query(index=self.index_name, body=body)
        print("清空完成")

    def Delete_Index(self, my_index):
        self.es.indices.delete(index=my_index, ignore=[400, 404])

    def Get_data_time(self, date1, date2, word):  # 每天的关键词的情感趋势
        doc = {
            "query": {
                "bool": {
                    "must": [{
                        "range": {
                            "time": {
                                "from": date1,
                                "to": date2
                            }
                        }
                    },
                        {
                            "match": {
                                "content": word,
                            }
                        }]
                }
            }
        }
        _searched = self.es.search(index=self.index_name, doc_type=self.index_type, body=doc, params={"size": 1000})
        return _searched[‘hits‘][‘hits‘]

    def Get_data_time_sentiment(self, date1, date2, word, sen):  # 每天的关键词的情感趋势
        doc = {
            "query": {
                "bool": {
                    "must": [{
                        "range": {
                            "time": {
                                "from": date1,
                                "to": date2
                            }
                        }
                    },
                        {
                            "match": {
                                "content": word,
                            }
                        },
                        {
                            "match": {
                                "sentiment": sen,
                            }
                        },
                    ]
                }
            }
        }
        _searched = self.es.search(index=self.index_name, doc_type=self.index_type, body=doc, params={"size": 1000})
        return _searched[‘hits‘][‘hits‘]

    def Hot_words_time(self, date1, date2):  # 根据日期挑选热词
        doc = {
            "aggs": {
                "date_ranges": {
                    "range": {
                        "field": "time",
                        "ranges": [
                            {
                                "from": date1,
                                "to": date2
                            },
                        ]},
                    "aggs": {
                        "content": {
                            "terms": {
                                "field": "content",
                                "size": 50,
                                "order": [{"_count": "desc"}]
                            }
                        }
                    }
                }
            }
        }
        _searched = self.es.search(index=self.index_name, doc_type=self.index_type, body=doc)
        return _searched[‘aggregations‘][‘date_ranges‘][‘buckets‘][0][‘content‘][‘buckets‘]

基于python的elasticsearch的应用实战(一)

原文:https://www.cnblogs.com/junyuebai/p/14335968.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!