对 \(n \times n\) 的 01 矩阵,每次操作可以反转一行或者一列。给定 \(a,b\) 两个矩阵,问 \(a\) 是否可以经过有限次操作变为 \(b\)。
只要我们确定了某一行(列)的操作情况,所有的操作情况都会被确定,因此只需枚举第一行是否操作,后面的递推计算即可,如果算下来还有剩余,那么就无解。
#include <bits/stdc++.h>
using namespace std;
#define int long long
signed main()
{
ios::sync_with_stdio(false);
int t;
cin >> t;
while (t--)
{
int n;
cin >> n;
vector<vector<int>> a(n + 2, vector<int>(n + 2));
vector<vector<int>> b(n + 2, vector<int>(n + 2));
for (int i = 1; i <= n; i++)
{
string str;
cin >> str;
for (int j = 1; j <= n; j++)
a[i][j] = str[j - 1] == ‘1‘;
}
for (int i = 1; i <= n; i++)
{
string str;
cin >> str;
for (int j = 1; j <= n; j++)
b[i][j] = str[j - 1] == ‘1‘;
}
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
a[i][j] ^= b[i][j];
}
}
auto t = a;
for (int i = 2; i <= n; i++)
{
if (t[i][1])
{
for (int j = 1; j <= n; j++)
t[i][j] ^= 1;
}
}
for (int j = 1; j <= n; j++)
{
if (t[1][j])
{
for (int i = 1; i <= n; i++)
t[i][j] ^= 1;
}
}
int cnt = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
cnt += t[i][j];
if (cnt == 0)
{
cout << "YES" << endl;
}
else
{
auto t = a;
for (int j = 1; j <= n; j++)
t[1][j] ^= 1;
for (int i = 2; i <= n; i++)
{
if (t[i][1])
{
for (int j = 1; j <= n; j++)
t[i][j] ^= 1;
}
}
for (int j = 1; j <= n; j++)
{
if (t[1][j])
{
for (int i = 1; i <= n; i++)
t[i][j] ^= 1;
}
}
int cnt = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
cnt += t[i][j];
if (cnt == 0)
{
cout << "YES" << endl;
}
else
{
cout << "NO" << endl;
}
}
}
}
原文:https://www.cnblogs.com/mollnn/p/14337899.html