首页 > 系统服务 > 详细

TCP/IP 协议栈在 Linux 内核中的运行时序分析

时间:2021-01-30 10:31:49      阅读:46      评论:0      收藏:0      [点我收藏+]

1、基础概念简介

1.1、Linux操作系统架构简介

Linux操作系统总体上由Linux内核和GNU系统构成,具体来讲由4个主要部分构成,即Linux内核、Shell、文件系统和应用程序。内核、Shell和文件系统构成了操作系统的基本结构,使得用户可以运行程序、管理文件并使用系统。

内核是操作系统的核心,具有很多最基本功能,它负责管理系统的进程、内存、设备驱动程序、文件和网络系统,决定着系统的性能和稳定性。

Linux内核由如下几部分组成:内存管理、进程管理、设备驱动程序、文件系统和网络管理等。
技术分享图片

1.2、网络分层模型

OSI

OSI(Open Systems Interconnection,开放系统互连)模型是ISO(International Organization for Standardization,国际标准化组织)设计的一种参考模型,它定义了组成网络的各个层。该模型由7层组成,自底向上分别为物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。每一层均可与其紧邻的上层和下层进行交互,并且它们都有自己的一套功能集。顶层的应用层通过应用软件能够直接与用户进行交互。在该模型中,每个分层都接受由它下一层所提供的特定服务,并且负责为自己的上一层提供特定的服务。

TCP/IP

TCP/IP协议族是一个四层协议系统,自底而上分别是网络接口、网络层、传输层和应用层。每一层完成不同
的功能,且通过若干协议来实现,上层协议使用下层协议提供的服务。

技术分享图片

1.3、Linux网络协议栈结构

Linux网络协议栈结构Linux的整个网络协议栈都构建与Linux Kernel中,整个栈也是严格按照分层的思想来设计的,整个栈共分为五层,分别是 :
  1,系统调用接口层,面向用户空间应用程序的接口调用库,向用户空间应用程序提供使用网络服务的接口。
  2,协议无关的接口层,就是SOCKET层,这一层的目的是屏蔽底层的不同协议(更准确的来说主要是TCP与UDP,当然还包括RAW IP, SCTP等),以便与系统调用层之间的接口可以简单,统一。简单的说,不管我们应用层使用什么协议,都要通过系统调用接口来建立一个SOCKET,这个SOCKET其实是一个巨大的sock结构,它和下面一层的网络协议层联系起来,屏蔽了不同的网络协议的不同,只吧数据部分呈献给应用层(通过系统调用接口来呈献)。
  3,网络协议实现层,这是整个协议栈的核心。这一层主要实现各种网络协议,最主要的当然是IP,ICMP,ARP,RARP,TCP,UDP等。
  4,与具体设备无关的驱动接口层,这一层的目的主要是为了统一不同的接口卡的驱动程序与网络协议层的接口,它将各种不同的驱动程序的功能统一抽象为几个特殊的动作,如open,close,init等,这一层可以屏蔽底层不同的驱动程序。
  5,驱动程序层,建立与硬件的接口层。

技术分享图片

1.4、Linux内核任务调度机制

中断处理会有一些特点,其中最主要的两个是:中断处理必须快速执行完毕,有时中断处理必须做很多冗长的事情因此中断被切分为两部分: 前半部,后半部。
中断处理代码运行于中断处理上下文中,此时禁止响应后续的中断,所以要避免中断处理代码长时间执行。但有些中断却又需要执行很多工作,所以中断处理有时会被分为两部分。第一部分中,中断处理先只做尽量少的重要工作,接下来提交第二部分给内核调度,然后就结束运行。当系统比较空闲并且处理器上下文允许处理中断时,第二部分被延后的剩余任务就会开始执行。
目前实现延后中断有如下三种途径:

  • 软中断(softirq)
  • tasklet
  • 工作队列(wq)

softirq

软中断即软件实现的中断,它的优先级比硬件中断低。为了有效地管理不同的softirq中断源,Linux采用的是一个名为softirq_vec[]的数组,数组的大小由NR_SOFTIRQS 表示,这是在编译时就确定了的,不能在系统运行过程中动态添加。每个软中断在内核中以softirq_action表示,在kernel/softirq.c中定义了一个包含有32个该结构体的数组。每种软中断对应数组的一项,所以软中断最多有32项。

内核目前实现了10 个软中断,定义在linux/interrupt.h中。

enum
{
    HI_SOFTIRQ=0,                     /* 高优先级tasklet */ /* 优先级最高 */
    TIMER_SOFTIRQ,                    /* 时钟相关的软中断 */
    NET_TX_SOFTIRQ,                   /* 将数据包传送到网卡 */
    NET_RX_SOFTIRQ,                   /* 从网卡接收数据包 */
    BLOCK_SOFTIRQ,                    /* 块设备的软中断 */
    BLOCK_IOPOLL_SOFTIRQ,             /* 支持IO轮询的块设备软中断 */
    TASKLET_SOFTIRQ,                  /* 常规tasklet */
    SCHED_SOFTIRQ,                    /* 调度程序软中断 */
    HRTIMER_SOFTIRQ,                  /* 高精度计时器软中断 */
    RCU_SOFTIRQ,                      /* RCU锁软中断,该软中断总是最后一个软中断 */ 
    NR_SOFTIRQS                       /* 软中断数,为10 */
};

通过调用open_softirq接口函数,将action函数指针指向向该软中断应该执行的函数

void open_softirq(int nr, void (*action)(struct softirq_action *))
{
    softirq_vec[nr].action = action;
}

调用raise_softirq这个接口函数来触发本地CPU上的softirq

void raise_softirq(unsigned int nr)
{
        unsigned long flags;

        local_irq_save(flags);
        raise_softirq_irqoff(nr);
        local_irq_restore(flags);
}

tasklet

tasklets 构建于 softirq 中断之上,他是基于下面两个软中断实现的:

TASKLET_SOFTIRQ;
HI_SOFTIRQ.

简而言之,tasklets 是运行时分配和初始化的软中断。和软中断不同的是,同一类型的 tasklets 可以在同一时间运行于不同的处理器上。

wq(工作队列)

工作队列是另外一个处理延后函数的概念,它大体上和 tasklets 类似。工作队列运行于内核进程上下文,而 tasklets 运行于软中断上下文。这意味着工作队列函数不必像 tasklets 一样必须是原子性的。Tasklets 总是运行于它提交自的那个处理器,工作队列在默认情况下也是这样。

工作队列最基础的用法,是作为创建内核线程的接口来处理提交到队列里的工作任务。所有这些内核线程称之为 worker thread,这些线程会被用来调度执行工作队列的延后函数。

内核线程

内核线程是直接由内核本身启动的进程。内核线程实际上是将内核函数委托给独立的进程,它与内核中的其他进程”并行”执行。内核线程经常被称之为内核守护进程。

他们执行下列任务:(1)、周期性地将修改的内存页与页来源块设备同步。(2)、如果内存页很少使用,则写入交换区。(3)、管理延时动作, 如2号进程接手内核进程的创建。(4)、实现文件系统的事务日志。

内核线程主要有两种类型:(1)、线程启动后一直等待,直至内核请求线程执行某一特定操作。(2)、线程启动后按周期性间隔运行,检测特定资源的使用,在用量超出或低于预置的限制时采取行动。

内核线程由内核自身生成,其特点在于:(1)、它们在CPU的管态执行,而不是用户态。(2)、它们只可以访问虚拟地址空间的内核部分(高于TASK_SIZE的所有地址),但不能访问用户空间。

内核线程是一种只运行在内核地址空间的线程。所有的内核线程共享内核地址空间,所以也共享同一份内核页表,内核线程只运行在内核地址空间中,只会访问 3-4GB (32位系统)的内核地址空间,不存在虚拟地址空间,因此每个内核线程的 task_struct 对象中的 mm 为 NULL。普通线程虽然也是同主线程共享地址空间,但是它的 task_struct 对象中的 mm 不为空,指向的是主线程的 mm_struct 对象,普通进程既可以运行在内核态,也可以运行在用户态而内核线程只运行在内核态。

1.5、Socket套接字

Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单的接口就是全部,让Socket去组织数据,以符合指定的协议。

Socket是一个接口,在用户进程与TCP/IP协议之间充当中间人,完成TCP/IP协议的书写,用户只需理解接口即可。

Socket起源于Unix,而Unix/Linux 基本哲学之一就是“一切皆文件”,都可以用“打开open –> 读写write/read –> 关闭close”模式 来操作。Socket就是该模式的一个实现,Socket即是一种特殊的文件,一些Socket函数就是对其进行的操作(读/写IO、打开、关闭)。

技术分享图片
技术分享图片

2、send过程分析

client/server 程序运行后,执行socket通信过程,使用send系统调用发送数据,依次经过应用层、传输层、网络层、数据链路层封装。

2.1、应用层

1.网络应用调用Socket API socket (int family, int type, int protocol) 创建一个 socket,该调用最终会调用 Linux system call socket() ,并最终调用 Linux Kernel 的 sock_create() 方法。该方法返回被创建好了的那个 socket 的 file descriptor。对于每一个 userspace 网络应用创建的 socket,在内核中都有一个对应的 struct socket和 struct sock。其中,struct sock 有三个队列(queue),分别是 rx , tx 和 err,在 sock 结构被初始化的时候,这些缓冲队列也被初始化完成;在收据收发过程中,每个 queue 中保存要发送或者接受的每个 packet 对应的 Linux 网络栈 sk_buffer 数据结构的实例 skb。

2.对于TCP socket 来说,应用调用 connect()API ,使得客户端和服务器端通过该 socket 建立一个虚拟连接。在此过程中,TCP 协议栈通过三次握手会建立 TCP 连接。默认地,该 API 会等到 TCP 握手完成连接建立后才返回。在建立连接的过程中的一个重要步骤是,确定双方使用的 Maxium Segemet Size (MSS)。因为 UDP 是面向无连接的协议,因此它是不需要该步骤的。

3.应用调用 Linux Socket 的 send 或者 write API 来发出一个 message 给接收端。

4.sock_sendmsg 被调用,它使用 socket descriptor 获取 sock struct,创建 message header 和 socket control message。

5._sock_sendmsg 被调用,根据 socket 的协议类型,调用相应协议的发送函数。

6.对于TCP ,调用 tcp_sendmsg 函数。

7.对于UDP 来说,userspace 应用可以调用 send()/sendto()/sendmsg() 三个 system call 中的任意一个来发送 UDP message,它们最终都会调用内核中的 udp_sendmsg() 函数。

下面进行源码分析:

当调用send()函数时,内核封装send()为sendto(),然后发起系统调用。其实也很好理解,send()就是sendto()的一种特殊情况,而sendto()在内核的系统调用服务程序为sys_sendto

int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
		 struct sockaddr __user *addr,  int addr_len)
{
	struct socket *sock;
	struct sockaddr_storage address;
	int err;
	struct msghdr msg;
	struct iovec iov;
	int fput_needed;

	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
	if (unlikely(err))
		return err;
	sock = sockfd_lookup_light(fd, &err, &fput_needed);
	if (!sock)
		goto out;

	msg.msg_name = NULL;
	msg.msg_control = NULL;
	msg.msg_controllen = 0;
	msg.msg_namelen = 0;
	if (addr) {
		err = move_addr_to_kernel(addr, addr_len, &address);
		if (err < 0)
			goto out_put;
		msg.msg_name = (struct sockaddr *)&address;
		msg.msg_namelen = addr_len;
	}
	if (sock->file->f_flags & O_NONBLOCK)
		flags |= MSG_DONTWAIT;
	msg.msg_flags = flags;
	err = sock_sendmsg(sock, &msg);

out_put:
	fput_light(sock->file, fput_needed);
out:
	return err;
}

这里定义了一个 struct msghdr 是用来表示要发送的数据的一些属性:

	struct msghdr {
	void		*msg_name;	/* 接收方的struct sockaddr结构体地址 (用于udp)*/
	int		msg_namelen;	/*  接收方的struct sockaddr结构体地址(用于udp)*/
	struct iov_iter	msg_iter;	/* io缓冲区的地址 */
	void		*msg_control;	/* 辅助数据的地址 */
	__kernel_size_t	msg_controllen;	/* 辅助数据的长度 */
	unsigned int	msg_flags;	/* 接受消息的表示 */
	struct kiocb	*msg_iocb;	/* ptr to iocb for async requests */
};

还有 struct iovec,他被称为io向量,故名思意,用来表示io数据的一些信息。

struct iovec
{
	void __user *iov_base;	/* 要传输数据的用户态下的地址 */
	__kernel_size_t iov_len; /* 要传输数据的长度 */
};

可以看到在返回时调用sock_sendmsg函数继续执行发送流程,sock_sendmsg继续调用sock_sendmsg_nosec(),sock_sendmsg_nosec()最后调用struct socket->ops->sendmsg,即对应套接字类型的sendmsg()函数,所有的套接字类型的sendmsg()函数都是 sock_sendmsg,该函数首先检查本地端口是否已绑定,无绑定则执行自动绑定,而后调用具体协议的sendmsg函数:

int sock_sendmsg(struct socket *sock, struct msghdr *msg)
{
	int err = security_socket_sendmsg(sock, msg,
					  msg_data_left(msg));

	return err ?: sock_sendmsg_nosec(sock, msg);
}
EXPORT_SYMBOL(sock_sendmsg);
static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
{
	int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
				     inet_sendmsg, sock, msg,
				     msg_data_left(msg));
	BUG_ON(ret == -EIOCBQUEUED);
	return ret;
}

继续追踪该函数,会看到最终调用的是inet_sendmsg:

int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
{
	struct sock *sk = sock->sk;
	
	if (unlikely(inet_send_prepare(sk)))
		return -EAGAIN;
		
	return INDIRECT_CALL_2(sk->sk_prot->sendmsg, tcp_sendmsg,
							udp_sendmsg,sk, msg, size);
}
EXPORT_SYMBOL(inet_sendmsg);

这里间接调用了tcp_sendmsg,传送到传输层。

下面进行gdb调试验证:

技术分享图片
技术分享图片

可以看到调用顺序和我们的预期是一致的。

2.2、传输层

1.tcp_sendmsg 函数会首先检查已经建立的 TCP connection 的状态,然后获取该连接的 MSS,开始 segement 发送流程。

2.构造TCP 段的 playload:它在内核空间中创建该 packet 的 sk_buffer 数据结构的实例 skb,从 userspace buffer 中拷贝 packet 的数据到 skb 的 buffer。

3.构造TCP header。

4.计算TCP 校验和(checksum)和 顺序号 (sequence number):TCP校验和是一个端到端的校验和,由发送端计算,然后由接收端验证。其目的是为了发现TCP首部和数据在发送端到接收端之间发生的任何改动。如果接收方检测到校验和有差错,则TCP段会被直接丢弃。TCP校验和覆盖 TCP 首部和 TCP 数据;TCP的校验和是必需的。

5.发到 IP 层处理:调用 IP handler 句柄 ip_queue_xmit,将 skb 传入 IP 处理流程。

下面进行源码分析:

从上面对应用层分析后可知,最后到达传输层调用的函数为tcp_sendmsg,该函数代码如下:

int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
{
	int ret;

	lock_sock(sk);
	ret = tcp_sendmsg_locked(sk, msg, size);
	release_sock(sk);

	return ret;
}
EXPORT_SYMBOL(tcp_sendmsg);

从这段代码可以看出,发送的过程涉及到上锁和释放锁的一个操作,查阅资料可知目的是让接收和发送队列能够有序进行相关的工作。所以在tcp_sendmsg中继续调用tcp_sendmsg_locked函数:

int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct ubuf_info *uarg = NULL;
	struct sk_buff *skb;
	struct sockcm_cookie sockc;
	int flags, err, copied = 0;
	int mss_now = 0, size_goal, copied_syn = 0;
	int process_backlog = 0;
	bool zc = false;
	long timeo;

	flags = msg->msg_flags;

	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
		skb = tcp_write_queue_tail(sk);
		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
		if (!uarg) {
			err = -ENOBUFS;
			goto out_err;
		}

		zc = sk->sk_route_caps & NETIF_F_SG;
		if (!zc)
			uarg->zerocopy = 0;
	}

	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
	    !tp->repair) {
		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
		if (err == -EINPROGRESS && copied_syn > 0)
			goto out;
		else if (err)
			goto out_err;
	}

	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);

	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */

	/* Wait for a connection to finish. One exception is TCP Fast Open
	 * (passive side) where data is allowed to be sent before a connection
	 * is fully established.
	 */
	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
	    !tcp_passive_fastopen(sk)) {
		err = sk_stream_wait_connect(sk, &timeo);
		if (err != 0)
			goto do_error;
	}

	if (unlikely(tp->repair)) {
		if (tp->repair_queue == TCP_RECV_QUEUE) {
			copied = tcp_send_rcvq(sk, msg, size);
			goto out_nopush;
		}

		err = -EINVAL;
		if (tp->repair_queue == TCP_NO_QUEUE)
			goto out_err;

		/* ‘common‘ sending to sendq */
	}

	sockcm_init(&sockc, sk);
	if (msg->msg_controllen) {
		err = sock_cmsg_send(sk, msg, &sockc);
		if (unlikely(err)) {
			err = -EINVAL;
			goto out_err;
		}
	}

	/* This should be in poll */
	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);

	/* Ok commence sending. */
	copied = 0;

restart:
	mss_now = tcp_send_mss(sk, &size_goal, flags);

	err = -EPIPE;
	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
		goto do_error;

	while (msg_data_left(msg)) {
		int copy = 0;

		skb = tcp_write_queue_tail(sk);
		if (skb)
			copy = size_goal - skb->len;

		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
			bool first_skb;

new_segment:
			if (!sk_stream_memory_free(sk))
				goto wait_for_sndbuf;

			if (unlikely(process_backlog >= 16)) {
				process_backlog = 0;
				if (sk_flush_backlog(sk))
					goto restart;
			}
			first_skb = tcp_rtx_and_write_queues_empty(sk);
			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
						  first_skb);
			if (!skb)
				goto wait_for_memory;

			process_backlog++;
			skb->ip_summed = CHECKSUM_PARTIAL;

			skb_entail(sk, skb);
			copy = size_goal;

			/* All packets are restored as if they have
			 * already been sent. skb_mstamp_ns isn‘t set to
			 * avoid wrong rtt estimation.
			 */
			if (tp->repair)
				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
		}

		/* Try to append data to the end of skb. */
		if (copy > msg_data_left(msg))
			copy = msg_data_left(msg);

		/* Where to copy to? */
		if (skb_availroom(skb) > 0 && !zc) {
			/* We have some space in skb head. Superb! */
			copy = min_t(int, copy, skb_availroom(skb));
			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
			if (err)
				goto do_fault;
		} else if (!zc) {
			bool merge = true;
			int i = skb_shinfo(skb)->nr_frags;
			struct page_frag *pfrag = sk_page_frag(sk);

			if (!sk_page_frag_refill(sk, pfrag))
				goto wait_for_memory;

			if (!skb_can_coalesce(skb, i, pfrag->page,
					      pfrag->offset)) {
				if (i >= sysctl_max_skb_frags) {
					tcp_mark_push(tp, skb);
					goto new_segment;
				}
				merge = false;
			}

			copy = min_t(int, copy, pfrag->size - pfrag->offset);

			if (!sk_wmem_schedule(sk, copy))
				goto wait_for_memory;

			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
						       pfrag->page,
						       pfrag->offset,
						       copy);
			if (err)
				goto do_error;

			/* Update the skb. */
			if (merge) {
				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
			} else {
				skb_fill_page_desc(skb, i, pfrag->page,
						   pfrag->offset, copy);
				page_ref_inc(pfrag->page);
			}
			pfrag->offset += copy;
		} else {
			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
			if (err == -EMSGSIZE || err == -EEXIST) {
				tcp_mark_push(tp, skb);
				goto new_segment;
			}
			if (err < 0)
				goto do_error;
			copy = err;
		}

		if (!copied)
			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;

		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
		TCP_SKB_CB(skb)->end_seq += copy;
		tcp_skb_pcount_set(skb, 0);

		copied += copy;
		if (!msg_data_left(msg)) {
			if (unlikely(flags & MSG_EOR))
				TCP_SKB_CB(skb)->eor = 1;
			goto out;
		}

		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
			continue;

		if (forced_push(tp)) {
			tcp_mark_push(tp, skb);
			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
		} else if (skb == tcp_send_head(sk))
			tcp_push_one(sk, mss_now);
		continue;

wait_for_sndbuf:
		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
wait_for_memory:
		if (copied)
			tcp_push(sk, flags & ~MSG_MORE, mss_now,
				 TCP_NAGLE_PUSH, size_goal);

		err = sk_stream_wait_memory(sk, &timeo);
		if (err != 0)
			goto do_error;

		mss_now = tcp_send_mss(sk, &size_goal, flags);
	}

out:
	if (copied) {
		tcp_tx_timestamp(sk, sockc.tsflags);
		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
	}
out_nopush:
	sock_zerocopy_put(uarg);
	return copied + copied_syn;

do_error:
	skb = tcp_write_queue_tail(sk);
do_fault:
	tcp_remove_empty_skb(sk, skb);

	if (copied + copied_syn)
		goto out;
out_err:
	sock_zerocopy_put_abort(uarg, true);
	err = sk_stream_error(sk, flags, err);
	/* make sure we wake any epoll edge trigger waiter */
	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
		sk->sk_write_space(sk);
		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
	}
	return err;
}
EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);

int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
{
	int ret;

	lock_sock(sk);
	ret = tcp_sendmsg_locked(sk, msg, size);
	release_sock(sk);

	return ret;
}
EXPORT_SYMBOL(tcp_sendmsg);

该函数完成了将所有的数据组织成发送队列,这个发送队列是struct sock结构中的一个域sk_write_queue,这个队列的每一个元素是一个skb,里面存放的就是待发送的数据。然后调用了tcp_push()函数。在tcp协议的头部有几个标志字段:URG、ACK、RSH、RST、SYN、FIN,tcp_push中会判断这个skb的元素是否需要push,如果需要就将tcp头部字段的push置一,置一的过程如下:

static void tcp_push(struct sock *sk, int flags, int mss_now,
		     int nonagle, int size_goal)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *skb;

	skb = tcp_write_queue_tail(sk);
	if (!skb)
		return;
	if (!(flags & MSG_MORE) || forced_push(tp))
		tcp_mark_push(tp, skb);

	tcp_mark_urg(tp, flags);

	if (tcp_should_autocork(sk, skb, size_goal)) {

		/* avoid atomic op if TSQ_THROTTLED bit is already set */
		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
		}
		/* It is possible TX completion already happened
		 * before we set TSQ_THROTTLED.
		 */
		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
			return;
	}

	if (flags & MSG_MORE)
		nonagle = TCP_NAGLE_CORK;

	__tcp_push_pending_frames(sk, mss_now, nonagle);
}

此处已经通过代码写入到skb队列当中,然后,tcp_push调用了__tcp_push_pending_frames函数发送数据:

void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
			       int nonagle)
{
	/* If we are closed, the bytes will have to remain here.
	 * In time closedown will finish, we empty the write queue and
	 * all will be happy.
	 */
	if (unlikely(sk->sk_state == TCP_CLOSE))
		return;

	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
			   sk_gfp_mask(sk, GFP_ATOMIC)))
		tcp_check_probe_timer(sk);
}

然后,在函数中继续追踪到tcp_write_xmit这个函数,这个函数即为具体发送过程,检查连接状态和拥塞窗口的大小,然后将skb队列发送出去:

static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
			   int push_one, gfp_t gfp)
{
	struct tcp_sock *tp = tcp_sk(sk);
	struct sk_buff *skb;
	unsigned int tso_segs, sent_pkts;
	int cwnd_quota;
	int result;
	bool is_cwnd_limited = false, is_rwnd_limited = false;
	u32 max_segs;

	sent_pkts = 0;

	tcp_mstamp_refresh(tp);
	if (!push_one) {
		/* Do MTU probing. */
		result = tcp_mtu_probe(sk);
		if (!result) {
			return false;
		} else if (result > 0) {
			sent_pkts = 1;
		}
	}

	max_segs = tcp_tso_segs(sk, mss_now);
	while ((skb = tcp_send_head(sk))) {
		unsigned int limit;

		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
			tcp_init_tso_segs(skb, mss_now);
			goto repair; /* Skip network transmission */
		}

		if (tcp_pacing_check(sk))
			break;

		tso_segs = tcp_init_tso_segs(skb, mss_now);
		BUG_ON(!tso_segs);

		cwnd_quota = tcp_cwnd_test(tp, skb);
		if (!cwnd_quota) {
			if (push_one == 2)
				/* Force out a loss probe pkt. */
				cwnd_quota = 1;
			else
				break;
		}

		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
			is_rwnd_limited = true;
			break;
		}

		if (tso_segs == 1) {
			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
						     (tcp_skb_is_last(sk, skb) ?
						      nonagle : TCP_NAGLE_PUSH))))
				break;
		} else {
			if (!push_one &&
			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
						 &is_rwnd_limited, max_segs))
				break;
		}

		limit = mss_now;
		if (tso_segs > 1 && !tcp_urg_mode(tp))
			limit = tcp_mss_split_point(sk, skb, mss_now,
						    min_t(unsigned int,
							  cwnd_quota,
							  max_segs),
						    nonagle);

		if (skb->len > limit &&
		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
			break;

		if (tcp_small_queue_check(sk, skb, 0))
			break;

		/* Argh, we hit an empty skb(), presumably a thread
		 * is sleeping in sendmsg()/sk_stream_wait_memory().
		 * We do not want to send a pure-ack packet and have
		 * a strange looking rtx queue with empty packet(s).
		 */
		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
			break;

		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
			break;

repair:
		/* Advance the send_head.  This one is sent out.
		 * This call will increment packets_out.
		 */
		tcp_event_new_data_sent(sk, skb);

		tcp_minshall_update(tp, mss_now, skb);
		sent_pkts += tcp_skb_pcount(skb);

		if (push_one)
			break;
	}

	if (is_rwnd_limited)
		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
	else
		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);

	if (likely(sent_pkts)) {
		if (tcp_in_cwnd_reduction(sk))
			tp->prr_out += sent_pkts;

		/* Send one loss probe per tail loss episode. */
		if (push_one != 2)
			tcp_schedule_loss_probe(sk, false);
		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
		tcp_cwnd_validate(sk, is_cwnd_limited);
		return false;
	}
	return !tp->packets_out && !tcp_write_queue_empty(sk);
}

再往下看可以追踪到tcp_transmit_skb函数和__tcp_transmit_skb函数:

static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
			    gfp_t gfp_mask)
{
	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
				  tcp_sk(sk)->rcv_nxt);
}
static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
{
	const struct inet_connection_sock *icsk = inet_csk(sk);
	struct inet_sock *inet;
	struct tcp_sock *tp;
	struct tcp_skb_cb *tcb;
	struct tcp_out_options opts;
	unsigned int tcp_options_size, tcp_header_size;
	struct sk_buff *oskb = NULL;
	struct tcp_md5sig_key *md5;
	struct tcphdr *th;
	u64 prior_wstamp;
	int err;

	BUG_ON(!skb || !tcp_skb_pcount(skb));
	tp = tcp_sk(sk);
	prior_wstamp = tp->tcp_wstamp_ns;
	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
	if (clone_it) {
		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
			- tp->snd_una;
		oskb = skb;

		tcp_skb_tsorted_save(oskb) {
			if (unlikely(skb_cloned(oskb)))
				skb = pskb_copy(oskb, gfp_mask);
			else
				skb = skb_clone(oskb, gfp_mask);
		} tcp_skb_tsorted_restore(oskb);

		if (unlikely(!skb))
			return -ENOBUFS;
		/* retransmit skbs might have a non zero value in skb->dev
		 * because skb->dev is aliased with skb->rbnode.rb_left
		 */
		skb->dev = NULL;
	}

	inet = inet_sk(sk);
	tcb = TCP_SKB_CB(skb);
	memset(&opts, 0, sizeof(opts));

	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
	} else {
		tcp_options_size = tcp_established_options(sk, skb, &opts,
							   &md5);
		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
		 * at receiver : This slightly improve GRO performance.
		 * Note that we do not force the PSH flag for non GSO packets,
		 * because they might be sent under high congestion events,
		 * and in this case it is better to delay the delivery of 1-MSS
		 * packets and thus the corresponding ACK packet that would
		 * release the following packet.
		 */
		if (tcp_skb_pcount(skb) > 1)
			tcb->tcp_flags |= TCPHDR_PSH;
	}
	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);

	/* if no packet is in qdisc/device queue, then allow XPS to select
	 * another queue. We can be called from tcp_tsq_handler()
	 * which holds one reference to sk.
	 *
	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
	 * One way to get this would be to set skb->truesize = 2 on them.
	 */
	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);

	/* If we had to use memory reserve to allocate this skb,
	 * this might cause drops if packet is looped back :
	 * Other socket might not have SOCK_MEMALLOC.
	 * Packets not looped back do not care about pfmemalloc.
	 */
	skb->pfmemalloc = 0;

	skb_push(skb, tcp_header_size);
	skb_reset_transport_header(skb);

	skb_orphan(skb);
	skb->sk = sk;
	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
	skb_set_hash_from_sk(skb, sk);
	refcount_add(skb->truesize, &sk->sk_wmem_alloc);

	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);

	/* Build TCP header and checksum it. */
	th = (struct tcphdr *)skb->data;
	th->source		= inet->inet_sport;
	th->dest		= inet->inet_dport;
	th->seq			= htonl(tcb->seq);
	th->ack_seq		= htonl(rcv_nxt);
	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
					tcb->tcp_flags);

	th->check		= 0;
	th->urg_ptr		= 0;

	/* The urg_mode check is necessary during a below snd_una win probe */
	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
		if (before(tp->snd_up, tcb->seq + 0x10000)) {
			th->urg_ptr = htons(tp->snd_up - tcb->seq);
			th->urg = 1;
		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
			th->urg_ptr = htons(0xFFFF);
			th->urg = 1;
		}
	}

	tcp_options_write((__be32 *)(th + 1), tp, &opts);
	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
		th->window      = htons(tcp_select_window(sk));
		tcp_ecn_send(sk, skb, th, tcp_header_size);
	} else {
		/* RFC1323: The window in SYN & SYN/ACK segments
		 * is never scaled.
		 */
		th->window	= htons(min(tp->rcv_wnd, 65535U));
	}
#ifdef CONFIG_TCP_MD5SIG
	/* Calculate the MD5 hash, as we have all we need now */
	if (md5) {
		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
		tp->af_specific->calc_md5_hash(opts.hash_location,
					       md5, sk, skb);
	}
#endif

	icsk->icsk_af_ops->send_check(sk, skb);

	if (likely(tcb->tcp_flags & TCPHDR_ACK))
		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);

	if (skb->len != tcp_header_size) {
		tcp_event_data_sent(tp, sk);
		tp->data_segs_out += tcp_skb_pcount(skb);
		tp->bytes_sent += skb->len - tcp_header_size;
	}

	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
			      tcp_skb_pcount(skb));

	tp->segs_out += tcp_skb_pcount(skb);
	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);

	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */

	/* Cleanup our debris for IP stacks */
	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
			       sizeof(struct inet6_skb_parm)));

	tcp_add_tx_delay(skb, tp);

	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);

	if (unlikely(err > 0)) {
		tcp_enter_cwr(sk);
		err = net_xmit_eval(err);
	}
	if (!err && oskb) {
		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
		tcp_rate_skb_sent(sk, oskb);
	}
	return err;
}

tcp_transmit_skb是tcp发送数据位于传输层的最后一步,这里首先对TCP数据段的头部进行了处理,然后调用了网络层提供的发送接口icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);实现了数据的发送,自此,数据离开了传输层,传输层的任务也就结束了。

下面进行gdb调试验证:

技术分享图片

可以看到调用过程符合我们的预期。

2.3、网络层

1.首先,ip_queue_xmit(skb)会检查skb->dst路由信息。如果没有,比如套接字的第一个包,就使用ip_route_output()选择一个路由。

2.接着,填充IP包的各个字段,比如版本、包头长度、TOS等。

3.中间的一些分片等,可参阅相关文档。基本思想是,当报文的长度大于mtu,gso的长度不为0就会调用 ip_fragment 进行分片,否则就会调用ip_finish_output2把数据发送出去。ip_fragment 函数中,会检查 IP_DF 标志位,如果待分片IP数据包禁止分片,则调用 icmp_send()向发送方发送一个原因为需要分片而设置了不分片标志的目的不可达ICMP报文,并丢弃报文,即设置IP状态为分片失败,释放skb,返回消息过长错误码。

4.接下来就用 ip_finish_ouput2 设置链路层报文头了。如果,链路层报头缓存有(即hh不为空),那就拷贝到skb里。如果没,那么就调用neigh_resolve_output,使用 ARP 获取。

下面进行源码分析:

入口函数是ip_queue_xmit,ip_queue_xmit是 ip 层提供给 tcp 层发送回调函数。大多数tcp发送都会使用这个回调,tcp层使用tcp_transmit_skb封装了tcp头之后,调用该函数,该函数提供了路由查找校验、封装ip头和ip选项的功能。

ip_queue_xmit()完成面向连接套接字的包输出,当套接字处于连接状态时,所有从套接字发出的包都具有确定的路由, 无需为每一个输出包查询它的目的入口,可将套接字直接绑定到路由入口上, 这由套接字的目的缓冲指针(dst_cache)来完成。ip_queue_xmit()首先为输入包建立IP包头, 经过本地包过滤器后,再将IP包分片输出(ip_fragment)。

static inline int ip_queue_xmit(struct sock *sk, struct sk_buff *skb,struct flowi *fl) 
{
 
     return __ip_queue_xmit(sk, skb, fl, inet_sk(sk)->tos);
 
}

在ip_queue_xmit中调用__ip_queue_xmit进行具体的消息处理:

/* Note: skb->sk can be different from sk, in case of tunnels */
int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
		    __u8 tos)
{
	struct inet_sock *inet = inet_sk(sk);
	struct net *net = sock_net(sk);
	struct ip_options_rcu *inet_opt;
	struct flowi4 *fl4;
	struct rtable *rt;
	struct iphdr *iph;
	int res;

	/* Skip all of this if the packet is already routed,
	 * f.e. by something like SCTP.
	 */
	rcu_read_lock();
	inet_opt = rcu_dereference(inet->inet_opt);
	fl4 = &fl->u.ip4;
	rt = skb_rtable(skb);
	if (rt)
		goto packet_routed;

	/* Make sure we can route this packet. */
	rt = (struct rtable *)__sk_dst_check(sk, 0);
	if (!rt) {
		__be32 daddr;

		/* Use correct destination address if we have options. */
		daddr = inet->inet_daddr;
		if (inet_opt && inet_opt->opt.srr)
			daddr = inet_opt->opt.faddr;

		/* If this fails, retransmit mechanism of transport layer will
		 * keep trying until route appears or the connection times
		 * itself out.
		 */
		rt = ip_route_output_ports(net, fl4, sk,
					   daddr, inet->inet_saddr,
					   inet->inet_dport,
					   inet->inet_sport,
					   sk->sk_protocol,
					   RT_CONN_FLAGS_TOS(sk, tos),
					   sk->sk_bound_dev_if);
		if (IS_ERR(rt))
			goto no_route;
		sk_setup_caps(sk, &rt->dst);
	}
	skb_dst_set_noref(skb, &rt->dst);

packet_routed:
	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
		goto no_route;

	/* OK, we know where to send it, allocate and build IP header. */
	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
	skb_reset_network_header(skb);
	iph = ip_hdr(skb);
	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
		iph->frag_off = htons(IP_DF);
	else
		iph->frag_off = 0;
	iph->ttl      = ip_select_ttl(inet, &rt->dst);
	iph->protocol = sk->sk_protocol;
	ip_copy_addrs(iph, fl4);

	/* Transport layer set skb->h.foo itself. */

	if (inet_opt && inet_opt->opt.optlen) {
		iph->ihl += inet_opt->opt.optlen >> 2;
		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
	}

	ip_select_ident_segs(net, skb, sk,
			     skb_shinfo(skb)->gso_segs ?: 1);

	/* TODO : should we use skb->sk here instead of sk ? */
	skb->priority = sk->sk_priority;
	skb->mark = sk->sk_mark;

	res = ip_local_out(net, sk, skb);
	rcu_read_unlock();
	return res;

no_route:
	rcu_read_unlock();
	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
	kfree_skb(skb);
	return -EHOSTUNREACH;
}
EXPORT_SYMBOL(__ip_queue_xmit);

ip_queue_xmit(skb)会检查skb->dst路由信息。如果没有,比如套接字的第一个包,就使用ip_route_output()选择一个路由。紧接着根据代码可知,会进行分片和字段填充等工作,根据我们所学知识可知,如果大于最大长度mtu,则进行分片,否则直接发出去,调用的函数是ip_finish_output,进而调用__ip_finish_output。

static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
	int ret;

	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
	switch (ret) {
	case NET_XMIT_SUCCESS:
		return __ip_finish_output(net, sk, skb);
	case NET_XMIT_CN:
		return __ip_finish_output(net, sk, skb) ? : ret;
	default:
		kfree_skb(skb);
		return ret;
	}
}
static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
	unsigned int mtu;

#if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
	/* Policy lookup after SNAT yielded a new policy */
	if (skb_dst(skb)->xfrm) {
		IPCB(skb)->flags |= IPSKB_REROUTED;
		return dst_output(net, sk, skb);
	}
#endif
	mtu = ip_skb_dst_mtu(sk, skb);
	if (skb_is_gso(skb))
		return ip_finish_output_gso(net, sk, skb, mtu);

	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);

	return ip_finish_output2(net, sk, skb);
}

这个函数检查完标志位和路由之后,正常情况下就调用ip_finish_output2发送数据报,在转发的过程中,neigh_output,neigh_hh_outpu(缓存)被调用,选择具体的路由进行转发,最终调用dev_queue_xmit(skb)将数据包考本到链路层skb,交由下一层处理。相关代码如下:

static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
{
	struct dst_entry *dst = skb_dst(skb);
	struct rtable *rt = (struct rtable *)dst;
	struct net_device *dev = dst->dev;
	unsigned int hh_len = LL_RESERVED_SPACE(dev);
	struct neighbour *neigh;
	bool is_v6gw = false;

	if (rt->rt_type == RTN_MULTICAST) {
		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
	} else if (rt->rt_type == RTN_BROADCAST)
		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);

	/* Be paranoid, rather than too clever. */
	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
		struct sk_buff *skb2;

		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
		if (!skb2) {
			kfree_skb(skb);
			return -ENOMEM;
		}
		if (skb->sk)
			skb_set_owner_w(skb2, skb->sk);
		consume_skb(skb);
		skb = skb2;
	}

	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
		int res = lwtunnel_xmit(skb);

		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
			return res;
	}

	rcu_read_lock_bh();
	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
	if (!IS_ERR(neigh)) {
		int res;

		sock_confirm_neigh(skb, neigh);
		/* if crossing protocols, can not use the cached header */
		res = neigh_output(neigh, skb, is_v6gw);
		rcu_read_unlock_bh();
		return res;
	}
	rcu_read_unlock_bh();

	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
			    __func__);
	kfree_skb(skb);
	return -EINVAL;
}

在构造好 ip 头,检查完分片之后,会调用邻居子系统的输出函数 neigh_output进行输出:

static inline int neigh_output(struct neighbour *n, struct sk_buff *skb,
			       bool skip_cache)
{
	const struct hh_cache *hh = &n->hh;

	if ((n->nud_state & NUD_CONNECTED) && hh->hh_len && !skip_cache)
		return neigh_hh_output(hh, skb);
	else
		return n->output(n, skb);
}

输出分为有二层头缓存和没有两种情况,有缓存时调用neigh_hh_output进行快速输出,没有缓存时,则调用邻居子系统的输出回调函数进行慢速输出:

static inline int neigh_hh_output(const struct hh_cache *hh, struct sk_buff *skb)
{
	unsigned int hh_alen = 0;
	unsigned int seq;
	unsigned int hh_len;

	do {
		seq = read_seqbegin(&hh->hh_lock);
		hh_len = READ_ONCE(hh->hh_len);
		if (likely(hh_len <= HH_DATA_MOD)) {
			hh_alen = HH_DATA_MOD;

			/* skb_push() would proceed silently if we have room for
			 * the unaligned size but not for the aligned size:
			 * check headroom explicitly.
			 */
			if (likely(skb_headroom(skb) >= HH_DATA_MOD)) {
				/* this is inlined by gcc */
				memcpy(skb->data - HH_DATA_MOD, hh->hh_data,
				       HH_DATA_MOD);
			}
		} else {
			hh_alen = HH_DATA_ALIGN(hh_len);

			if (likely(skb_headroom(skb) >= hh_alen)) {
				memcpy(skb->data - hh_alen, hh->hh_data,
				       hh_alen);
			}
		}
	} while (read_seqretry(&hh->hh_lock, seq));

	if (WARN_ON_ONCE(skb_headroom(skb) < hh_alen)) {
		kfree_skb(skb);
		return NET_XMIT_DROP;
	}

	__skb_push(skb, hh_len);
	return dev_queue_xmit(skb);
}

最后调用dev_queue_xmit函数进行向链路层发送包。

下面进行gdb断点调试验证:

技术分享图片
技术分享图片

2.4、链路层和物理层

1.数据链路层在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。这一层数据的单位称为帧(frame)。从dev_queue_xmit函数开始,位于net/core/dev.c文件中。上层调用dev_queue_xmit,进而调用 __dev_queue_xmit,再调用dev_hard_start_xmit函数获取skb。

2.在xmit_one中调用net_dev_start_xmit函数。进而调用netdev_start_xmit,实际上是调用netdev_start_xmit函数。

3.调用各网络设备实现的ndo_start_xmit回调函数指针,从而把数据发送给网卡,物理层在收到发送请求之后,通过 DMA 将该主存中的数据拷贝至内部RAM(buffer)之中。在数据拷贝中,同时加入符合以太网协议的相关header,IFG、前导符和CRC。对于以太网网络,物理层发送采用CSMA/CD,即在发送过程中侦听链路冲突。一旦网卡完成报文发送,将产生中断通知CPU,然后驱动层中的中断处理程序就可以删除保存的 skb 了。

下面进行代码分析:

上层跟踪出来的入口函数dev_queue_xmit,即在这个函数入口这里进入链路层进行处理:

int dev_queue_xmit(struct sk_buff *skb)
{
	return __dev_queue_xmit(skb, NULL);
}
EXPORT_SYMBOL(dev_queue_xmit);

实际调用__dev_queue_xmit函数:

static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
{
	struct net_device *dev = skb->dev;
	struct netdev_queue *txq;
	struct Qdisc *q;
	int rc = -ENOMEM;
	bool again = false;

	skb_reset_mac_header(skb);

	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);

	/* Disable soft irqs for various locks below. Also
	 * stops preemption for RCU.
	 */
	rcu_read_lock_bh();

	skb_update_prio(skb);

	qdisc_pkt_len_init(skb);
#ifdef CONFIG_NET_CLS_ACT
	skb->tc_at_ingress = 0;
# ifdef CONFIG_NET_EGRESS
	if (static_branch_unlikely(&egress_needed_key)) {
		skb = sch_handle_egress(skb, &rc, dev);
		if (!skb)
			goto out;
	}
# endif
#endif
	/* If device/qdisc don‘t need skb->dst, release it right now while
	 * its hot in this cpu cache.
	 */
	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
		skb_dst_drop(skb);
	else
		skb_dst_force(skb);

	txq = netdev_core_pick_tx(dev, skb, sb_dev);
	q = rcu_dereference_bh(txq->qdisc);

	trace_net_dev_queue(skb);
	if (q->enqueue) {
		rc = __dev_xmit_skb(skb, q, dev, txq);
		goto out;
	}

	/* The device has no queue. Common case for software devices:
	 * loopback, all the sorts of tunnels...

	 * Really, it is unlikely that netif_tx_lock protection is necessary
	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
	 * counters.)
	 * However, it is possible, that they rely on protection
	 * made by us here.

	 * Check this and shot the lock. It is not prone from deadlocks.
	 *Either shot noqueue qdisc, it is even simpler 8)
	 */
	if (dev->flags & IFF_UP) {
		int cpu = smp_processor_id(); /* ok because BHs are off */

		if (txq->xmit_lock_owner != cpu) {
			if (dev_xmit_recursion())
				goto recursion_alert;

			skb = validate_xmit_skb(skb, dev, &again);
			if (!skb)
				goto out;

			HARD_TX_LOCK(dev, txq, cpu);

			if (!netif_xmit_stopped(txq)) {
				dev_xmit_recursion_inc();
				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
				dev_xmit_recursion_dec();
				if (dev_xmit_complete(rc)) {
					HARD_TX_UNLOCK(dev, txq);
					goto out;
				}
			}
			HARD_TX_UNLOCK(dev, txq);
			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
					     dev->name);
		} else {
			/* Recursion is detected! It is possible,
			 * unfortunately
			 */
recursion_alert:
			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
					     dev->name);
		}
	}

	rc = -ENETDOWN;
	rcu_read_unlock_bh();

	atomic_long_inc(&dev->tx_dropped);
	kfree_skb_list(skb);
	return rc;
out:
	rcu_read_unlock_bh();
	return rc;
}

__dev_queue_xmit会调用dev_hard_start_xmit函数获取skb:

struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
				    struct netdev_queue *txq, int *ret)
{
	struct sk_buff *skb = first;
	int rc = NETDEV_TX_OK;

	while (skb) {
		struct sk_buff *next = skb->next;

		skb_mark_not_on_list(skb);
		rc = xmit_one(skb, dev, txq, next != NULL);
		if (unlikely(!dev_xmit_complete(rc))) {
			skb->next = next;
			goto out;
		}

		skb = next;
		if (netif_tx_queue_stopped(txq) && skb) {
			rc = NETDEV_TX_BUSY;
			break;
		}
	}

out:
	*ret = rc;
	return skb;
}

最终的数据通过xmit_one这个函数传递给物理层的设备,到这里虚拟的传递的驱动就要结束了,将和实际的设备驱动连接起来:

static int xmit_one(struct sk_buff *skb, struct net_device *dev,
		    struct netdev_queue *txq, bool more)
{
	unsigned int len;
	int rc;

	if (dev_nit_active(dev))
		dev_queue_xmit_nit(skb, dev);

	len = skb->len;
	trace_net_dev_start_xmit(skb, dev);
	rc = netdev_start_xmit(skb, dev, txq, more);
	trace_net_dev_xmit(skb, rc, dev, len);

	return rc;
}

xmit_one函数在使用的过程中,利用netdev_start_xmit来启动物理层的接口,进而调用__netdev_start_xmit,物理层在收到发送请求之后,通过 DMA 将该主存中的数据拷贝至内部RAM(buffer)之中,同时在数据的拷贝中,还会加入相关协议等。对于以太网网络,物理层发送采用CSMA/CD协议,即在发送过程中侦听链路冲突。一旦网卡完成报文发送,将产生中断通知CPU,然后驱动层中的中断处理程序就可以删除保存的 skb 了。到这一步,这个数据就可以完整的输出到物理层设备上了,转化为比特流的形式。

static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, struct sk_buff *skb, struct net_device *dev, bool more)
 {
     __this_cpu_write(softnet_data.xmit.more, more);
 
     return ops->ndo_start_xmit(skb, dev);
 }

调用各网络设备实现的ndo_start_xmit回调函数指针,其为数据结构struct net_device,从而把数据发送给网卡,物理层在收到发送请求之后,通过 DMA 将该主存中的数据拷贝至内部RAM(buffer)之中。在数据拷贝中,同时加入符合以太网协议的相关header,IFG、前导符和CRC。对于以太网网络,物理层发送采用CSMA/CD,即在发送过程中侦听链路冲突。

一旦网卡完成报文发送,将产生中断通知CPU,然后驱动层中的中断处理程序就可以删除保存的 skb 了。

下面进行gdb断点调试验证:

技术分享图片

3、recv过程分析

3.1、链路层和物理层

1.包到达机器的物理网卡时候触发一个中断,并将通过DMA传送到位于 linux kernel 内存中的rx_ring。中断处理程序分配 skb_buff 数据结构,并将接收到的数据帧从网络适配器I/O端口拷贝到skb_buff 缓冲区中,并设置 skb_buff 相应的参数,这些参数将被上层的网络协议使用,例如skb->protocol;

2.然后发出一个软中断(NET_RX_SOFTIRQ,该变量定义在include/linux/interrupt.h 文件中),通知内核接收到新的数据帧。进入软中断处理流程,调用 net_rx_action 函数。包从 rx_ring 中被删除,进入 netif _receive_skb 处理流程。

3.netif_receive_skb根据注册在全局数组 ptype_all 和 ptype_base 里的网络层数据报类型,把数据报递交给不同的网络层协议的接收函数(INET域中主要是ip_rcv和arp_rcv)。

下面进行源码分析:

在linux5.4.34内核中,利用一组特殊的API 来处理接收的数据帧,即 NAPI,通过NAPI机制该中断处理程序调用 Network device的 netif_rx_schedule 函数,进入软中断处理流程,再调用 net_rx_action 函数:

static __latent_entropy void net_rx_action(struct softirq_action *h)
{
	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
	unsigned long time_limit = jiffies +
		usecs_to_jiffies(netdev_budget_usecs);
	int budget = netdev_budget;
	LIST_HEAD(list);
	LIST_HEAD(repoll);

	local_irq_disable();
	list_splice_init(&sd->poll_list, &list);
	local_irq_enable();

	for (;;) {
		struct napi_struct *n;

		if (list_empty(&list)) {
			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
				goto out;
			break;
		}

		n = list_first_entry(&list, struct napi_struct, poll_list);
		budget -= napi_poll(n, &repoll);

		/* If softirq window is exhausted then punt.
		 * Allow this to run for 2 jiffies since which will allow
		 * an average latency of 1.5/HZ.
		 */
		if (unlikely(budget <= 0 ||
			     time_after_eq(jiffies, time_limit))) {
			sd->time_squeeze++;
			break;
		}
	}

	local_irq_disable();

	list_splice_tail_init(&sd->poll_list, &list);
	list_splice_tail(&repoll, &list);
	list_splice(&list, &sd->poll_list);
	if (!list_empty(&sd->poll_list))
		__raise_softirq_irqoff(NET_RX_SOFTIRQ);

	net_rps_action_and_irq_enable(sd);
out:
	__kfree_skb_flush();
}

net_rx_action调用网卡驱动里的napi_poll函数来一个一个的处理数据包。在poll函数中,驱动会一个接一个的读取网卡写到内存中的数据包,内存中数据包的格式只有驱动知道。驱动程序将内存中的数据包转换成内核网络模块能识别的skb格式,然后调用napi_gro_receive函数:

static int napi_poll(struct napi_struct *n, struct list_head *repoll)
{
	void *have;
	int work, weight;

	list_del_init(&n->poll_list);

	have = netpoll_poll_lock(n);

	weight = n->weight;

	/* This NAPI_STATE_SCHED test is for avoiding a race
	 * with netpoll‘s poll_napi().  Only the entity which
	 * obtains the lock and sees NAPI_STATE_SCHED set will
	 * actually make the ->poll() call.  Therefore we avoid
	 * accidentally calling ->poll() when NAPI is not scheduled.
	 */
	work = 0;
	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
		work = n->poll(n, weight);
		trace_napi_poll(n, work, weight);
	}

	WARN_ON_ONCE(work > weight);

	if (likely(work < weight))
		goto out_unlock;

	/* Drivers must not modify the NAPI state if they
	 * consume the entire weight.  In such cases this code
	 * still "owns" the NAPI instance and therefore can
	 * move the instance around on the list at-will.
	 */
	if (unlikely(napi_disable_pending(n))) {
		napi_complete(n);
		goto out_unlock;
	}

	if (n->gro_bitmask) {
		/* flush too old packets
		 * If HZ < 1000, flush all packets.
		 */
		napi_gro_flush(n, HZ >= 1000);
	}

	gro_normal_list(n);

	/* Some drivers may have called napi_schedule
	 * prior to exhausting their budget.
	 */
	if (unlikely(!list_empty(&n->poll_list))) {
		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
			     n->dev ? n->dev->name : "backlog");
		goto out_unlock;
	}

	list_add_tail(&n->poll_list, repoll);

out_unlock:
	netpoll_poll_unlock(have);

	return work;
}
gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
{
	gro_result_t ret;

	skb_mark_napi_id(skb, napi);
	trace_napi_gro_receive_entry(skb);

	skb_gro_reset_offset(skb);

	ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
	trace_napi_gro_receive_exit(ret);

	return ret;
}
EXPORT_SYMBOL(napi_gro_receive);

然后会直接调用netif_receive_skb_core函数:

int netif_receive_skb_core(struct sk_buff *skb)
{
	int ret;

	rcu_read_lock();
	ret = __netif_receive_skb_one_core(skb, false);
	rcu_read_unlock();

	return ret;
}
EXPORT_SYMBOL(netif_receive_skb_core);

netif_receive_skb_core调用 __netif_receive_skb_one_core,将数据包交给上层ip_rcv进行处理:

static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
{
	struct net_device *orig_dev = skb->dev;
	struct packet_type *pt_prev = NULL;
	int ret;

	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
	if (pt_prev)
		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
					 skb->dev, pt_prev, orig_dev);
	return ret;
}

待内存中的所有数据包被处理完成后(即poll函数执行完成),启用网卡的硬中断,这样下次网卡再收到数据的时候就会通知CPU。

下面进行gdb断点调试验证:

技术分享图片

3.2、网络层

1.IP层的入口函数在 ip_rcv 函数。该函数首先会做包括 package checksum 在内的各种检查,如果需要的话会做 IP defragment(将多个分片合并),然后 packet 调用已经注册的 Pre-routing netfilter hook ,完成后最终到达 ip_rcv_finish 函数。

2.ip_rcv_finish 函数会调用 ip_router_input 函数,进入路由处理环节。它首先会调用 ip_route_input 来更新路由,然后查找 route,决定该 package 将会被发到本机还是会被转发还是丢弃: (1)如果是发到本机的话,调用 ip_local_deliver 函数,可能会做 de-fragment(合并多个 IP packet),然后调用 ip_local_deliver 函数。该函数根据 package 的下一个处理层的 protocal number,调用下一层接口,包括 tcp_v4_rcv (TCP), udp_rcv (UDP),icmp_rcv (ICMP),igmp_rcv(IGMP)。对于 TCP 来说,函数 tcp_v4_rcv 函数会被调用,从而处理流程进入 TCP 栈。(2)如果需要转发 (forward),则进入转发流程。该流程需要处理 TTL,再调用 dst_input 函数。该函数会 <1>处理 Netfilter Hook<2>执行 IP fragmentation<3>调用 dev_queue_xmit,进入链路层处理流程。

下面进行源码分析:

IP 层的入口函数在 ip_rcv 函数:

int ip_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt,
	   struct net_device *orig_dev)
{
	struct net *net = dev_net(dev);

	skb = ip_rcv_core(skb, net);
	if (skb == NULL)
		return NET_RX_DROP;

	return NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING,
		       net, NULL, skb, dev, NULL,
		       ip_rcv_finish);
}

最终调用的是ip_rcv_finish这个函数接口,如果是发到本机就调用dst_input:

static int ip_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
{
	struct net_device *dev = skb->dev;
	int ret;

	/* if ingress device is enslaved to an L3 master device pass the
	 * skb to its handler for processing
	 */
	skb = l3mdev_ip_rcv(skb);
	if (!skb)
		return NET_RX_SUCCESS;

	ret = ip_rcv_finish_core(net, sk, skb, dev);
	if (ret != NET_RX_DROP)
		ret = dst_input(skb);
	return ret;
}
static inline int dst_input(struct sk_buff *skb)

{

    return skb_dst(skb)->input(skb);

}

根据源码可以看出发向上层的数据时调用 ip_local_deliver 函数,可能会合并IP包,然后调用 ip_local_deliver 函数。该函数根据 package 的下一个处理层的 protocal number,调用下一层接口,包括 tcp_v4_rcv等,对于 TCP 来说,函数 tcp_v4_rcv 函数会被调用,从而处理流程进入 TCP 栈。由此可以和我们刚刚追踪的传输层的函数连接起来;当然,更新路由的时候如果是转发而不是发送到本机则向下层处理:

int ip_local_deliver(struct sk_buff *skb)
{
	/*
	 *	Reassemble IP fragments.
	 */
	struct net *net = dev_net(skb->dev);

	if (ip_is_fragment(ip_hdr(skb))) {
		if (ip_defrag(net, skb, IP_DEFRAG_LOCAL_DELIVER))
			return 0;
	}

	return NF_HOOK(NFPROTO_IPV4, NF_INET_LOCAL_IN,
		       net, NULL, skb, skb->dev, NULL,
		       ip_local_deliver_finish);
}

判断是否分片,如果有分片就ip_defrag()进行合并多个数据包的操作:

int ip_defrag(struct net *net, struct sk_buff *skb, u32 user)
{
	struct net_device *dev = skb->dev ? : skb_dst(skb)->dev;
	int vif = l3mdev_master_ifindex_rcu(dev);
	struct ipq *qp;

	__IP_INC_STATS(net, IPSTATS_MIB_REASMREQDS);
	skb_orphan(skb);

	/* Lookup (or create) queue header */
	qp = ip_find(net, ip_hdr(skb), user, vif);
	if (qp) {
		int ret;

		spin_lock(&qp->q.lock);

		ret = ip_frag_queue(qp, skb);

		spin_unlock(&qp->q.lock);
		ipq_put(qp);
		return ret;
	}

	__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
	kfree_skb(skb);
	return -ENOMEM;
}
EXPORT_SYMBOL(ip_defrag);

没有分片就调用ip_local_deliver_finish:

static int ip_local_deliver_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
{
	__skb_pull(skb, skb_network_header_len(skb));

	rcu_read_lock();
	ip_protocol_deliver_rcu(net, skb, ip_hdr(skb)->protocol);
	rcu_read_unlock();

	return 0;
}

进一步调用ip_protocol_deliver_rcu,该函数根据 package 的下一个处理层的 protocal number,调用下一层接口,包括 tcp_v4_rcv (TCP), udp_rcv (UDP)。对于 TCP 来说,函数 tcp_v4_rcv 函数会被调用,从而处理流程进入 TCP 栈:

void ip_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int protocol)
{
	const struct net_protocol *ipprot;
	int raw, ret;

resubmit:
	raw = raw_local_deliver(skb, protocol);

	ipprot = rcu_dereference(inet_protos[protocol]);
	if (ipprot) {
		if (!ipprot->no_policy) {
			if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
				kfree_skb(skb);
				return;
			}
			nf_reset_ct(skb);
		}
		ret = INDIRECT_CALL_2(ipprot->handler, tcp_v4_rcv, udp_rcv,
				      skb);
		if (ret < 0) {
			protocol = -ret;
			goto resubmit;
		}
		__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
	} else {
		if (!raw) {
			if (xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
				__IP_INC_STATS(net, IPSTATS_MIB_INUNKNOWNPROTOS);
				icmp_send(skb, ICMP_DEST_UNREACH,
					  ICMP_PROT_UNREACH, 0);
			}
			kfree_skb(skb);
		} else {
			__IP_INC_STATS(net, IPSTATS_MIB_INDELIVERS);
			consume_skb(skb);
		}
	}
}

下面进行gdb断点调试验证:

技术分享图片

3.3、传输层

1.传输层TCP 处理入口在 tcp_v4_rcv 函数(位于 linux/net/ipv4/tcp ipv4.c 文件中),它会做 TCP header 检查等处理。

2.调用 _tcp_v4_lookup,查找该package的open socket。如果找不到,该package会被丢弃。接下来检查 socket 和 connection 的状态。

3.如果socket 和 connection 一切正常,调用 tcp_prequeue 使 package 从内核进入 user space,放进 socket 的 receive queue。然后 socket 会被唤醒,调用 system call,并最终调用 tcp_recvmsg 函数去从 socket recieve queue 中获取 segment。

下面进行源码分析:

tcp_v4_rcv函数为TCP的总入口,数据包从IP层传递上来,进入该函数;其协议操作函数结构如下所示,其中handler即为IP层向TCP传递数据包的回调函数,设置为tcp_v4_rcv:

static struct net_protocol tcp_protocol = {
     .early_demux    =    tcp_v4_early_demux,
     .early_demux_handler =  tcp_v4_early_demux,
     .handler    =    tcp_v4_rcv,
     .err_handler    =    tcp_v4_err,
     .no_policy    =    1,
     .netns_ok    =    1,
     .icmp_strict_tag_validation = 1,
 };
int tcp_v4_rcv(struct sk_buff *skb)
{
	struct net *net = dev_net(skb->dev);
	struct sk_buff *skb_to_free;
	int sdif = inet_sdif(skb);
	const struct iphdr *iph;
	const struct tcphdr *th;
	bool refcounted;
	struct sock *sk;
	int ret;

	if (skb->pkt_type != PACKET_HOST)
		goto discard_it;

	/* Count it even if it‘s bad */
	__TCP_INC_STATS(net, TCP_MIB_INSEGS);

	if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
		goto discard_it;

	th = (const struct tcphdr *)skb->data;

	if (unlikely(th->doff < sizeof(struct tcphdr) / 4))
		goto bad_packet;
	if (!pskb_may_pull(skb, th->doff * 4))
		goto discard_it;

	/* An explanation is required here, I think.
	 * Packet length and doff are validated by header prediction,
	 * provided case of th->doff==0 is eliminated.
	 * So, we defer the checks. */

	if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
		goto csum_error;

	th = (const struct tcphdr *)skb->data;
	iph = ip_hdr(skb);
lookup:
	sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source,
			       th->dest, sdif, &refcounted);
	if (!sk)
		goto no_tcp_socket;

process:
	if (sk->sk_state == TCP_TIME_WAIT)
		goto do_time_wait;

	if (sk->sk_state == TCP_NEW_SYN_RECV) {
		struct request_sock *req = inet_reqsk(sk);
		bool req_stolen = false;
		struct sock *nsk;

		sk = req->rsk_listener;
		if (unlikely(tcp_v4_inbound_md5_hash(sk, skb))) {
			sk_drops_add(sk, skb);
			reqsk_put(req);
			goto discard_it;
		}
		if (tcp_checksum_complete(skb)) {
			reqsk_put(req);
			goto csum_error;
		}
		if (unlikely(sk->sk_state != TCP_LISTEN)) {
			inet_csk_reqsk_queue_drop_and_put(sk, req);
			goto lookup;
		}
		/* We own a reference on the listener, increase it again
		 * as we might lose it too soon.
		 */
		sock_hold(sk);
		refcounted = true;
		nsk = NULL;
		if (!tcp_filter(sk, skb)) {
			th = (const struct tcphdr *)skb->data;
			iph = ip_hdr(skb);
			tcp_v4_fill_cb(skb, iph, th);
			nsk = tcp_check_req(sk, skb, req, false, &req_stolen);
		}
		if (!nsk) {
			reqsk_put(req);
			if (req_stolen) {
				/* Another cpu got exclusive access to req
				 * and created a full blown socket.
				 * Try to feed this packet to this socket
				 * instead of discarding it.
				 */
				tcp_v4_restore_cb(skb);
				sock_put(sk);
				goto lookup;
			}
			goto discard_and_relse;
		}
		if (nsk == sk) {
			reqsk_put(req);
			tcp_v4_restore_cb(skb);
		} else if (tcp_child_process(sk, nsk, skb)) {
			tcp_v4_send_reset(nsk, skb);
			goto discard_and_relse;
		} else {
			sock_put(sk);
			return 0;
		}
	}
	if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
		__NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP);
		goto discard_and_relse;
	}

	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
		goto discard_and_relse;

	if (tcp_v4_inbound_md5_hash(sk, skb))
		goto discard_and_relse;

	nf_reset_ct(skb);

	if (tcp_filter(sk, skb))
		goto discard_and_relse;
	th = (const struct tcphdr *)skb->data;
	iph = ip_hdr(skb);
	tcp_v4_fill_cb(skb, iph, th);

	skb->dev = NULL;

	if (sk->sk_state == TCP_LISTEN) {
		ret = tcp_v4_do_rcv(sk, skb);
		goto put_and_return;
	}

	sk_incoming_cpu_update(sk);

	bh_lock_sock_nested(sk);
	tcp_segs_in(tcp_sk(sk), skb);
	ret = 0;
	if (!sock_owned_by_user(sk)) {
		skb_to_free = sk->sk_rx_skb_cache;
		sk->sk_rx_skb_cache = NULL;
		ret = tcp_v4_do_rcv(sk, skb);
	} else {
		if (tcp_add_backlog(sk, skb))
			goto discard_and_relse;
		skb_to_free = NULL;
	}
	bh_unlock_sock(sk);
	if (skb_to_free)
		__kfree_skb(skb_to_free);

put_and_return:
	if (refcounted)
		sock_put(sk);

	return ret;

no_tcp_socket:
	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
		goto discard_it;

	tcp_v4_fill_cb(skb, iph, th);

	if (tcp_checksum_complete(skb)) {
csum_error:
		__TCP_INC_STATS(net, TCP_MIB_CSUMERRORS);
bad_packet:
		__TCP_INC_STATS(net, TCP_MIB_INERRS);
	} else {
		tcp_v4_send_reset(NULL, skb);
	}

discard_it:
	/* Discard frame. */
	kfree_skb(skb);
	return 0;

discard_and_relse:
	sk_drops_add(sk, skb);
	if (refcounted)
		sock_put(sk);
	goto discard_it;

do_time_wait:
	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
		inet_twsk_put(inet_twsk(sk));
		goto discard_it;
	}

	tcp_v4_fill_cb(skb, iph, th);

	if (tcp_checksum_complete(skb)) {
		inet_twsk_put(inet_twsk(sk));
		goto csum_error;
	}
	switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
	case TCP_TW_SYN: {
		struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
							&tcp_hashinfo, skb,
							__tcp_hdrlen(th),
							iph->saddr, th->source,
							iph->daddr, th->dest,
							inet_iif(skb),
							sdif);
		if (sk2) {
			inet_twsk_deschedule_put(inet_twsk(sk));
			sk = sk2;
			tcp_v4_restore_cb(skb);
			refcounted = false;
			goto process;
		}
	}
		/* to ACK */
		/* fall through */
	case TCP_TW_ACK:
		tcp_v4_timewait_ack(sk, skb);
		break;
	case TCP_TW_RST:
		tcp_v4_send_reset(sk, skb);
		inet_twsk_deschedule_put(inet_twsk(sk));
		goto discard_it;
	case TCP_TW_SUCCESS:;
	}
	goto discard_it;
}

tcp_v4_rcv函数只要做以下几个工作:(1) 设置TCP_CB (2) 查找控制块 (3)根据控制块状态做不同处理,包括TCP_TIME_WAIT状态处理,TCP_NEW_SYN_RECV状态处理,TCP_LISTEN状态处理 (4) 接收TCP段。

可以看到具体过程是检测连接状态最后调用具体的接收处理函数tcp_v4_do_rcv:

int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
{
	struct sock *rsk;

	if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
		struct dst_entry *dst = sk->sk_rx_dst;

		sock_rps_save_rxhash(sk, skb);
		sk_mark_napi_id(sk, skb);
		if (dst) {
			if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
			    !dst->ops->check(dst, 0)) {
				dst_release(dst);
				sk->sk_rx_dst = NULL;
			}
		}
		tcp_rcv_established(sk, skb);
		return 0;
	}

	if (tcp_checksum_complete(skb))
		goto csum_err;

	if (sk->sk_state == TCP_LISTEN) {
		struct sock *nsk = tcp_v4_cookie_check(sk, skb);

		if (!nsk)
			goto discard;
		if (nsk != sk) {
			if (tcp_child_process(sk, nsk, skb)) {
				rsk = nsk;
				goto reset;
			}
			return 0;
		}
	} else
		sock_rps_save_rxhash(sk, skb);

	if (tcp_rcv_state_process(sk, skb)) {
		rsk = sk;
		goto reset;
	}
	return 0;

reset:
	tcp_v4_send_reset(rsk, skb);
discard:
	kfree_skb(skb);
	/* Be careful here. If this function gets more complicated and
	 * gcc suffers from register pressure on the x86, sk (in %ebx)
	 * might be destroyed here. This current version compiles correctly,
	 * but you have been warned.
	 */
	return 0;

csum_err:
	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
	goto discard;
}
EXPORT_SYMBOL(tcp_v4_do_rcv);

建立连接之后利用tcp_rcv_established来进行数据的接收:

void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
{
	const struct tcphdr *th = (const struct tcphdr *)skb->data;
	struct tcp_sock *tp = tcp_sk(sk);
	unsigned int len = skb->len;

	/* TCP congestion window tracking */
	trace_tcp_probe(sk, skb);

	tcp_mstamp_refresh(tp);
	if (unlikely(!sk->sk_rx_dst))
		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
	/*
	 *	Header prediction.
	 *	The code loosely follows the one in the famous
	 *	"30 instruction TCP receive" Van Jacobson mail.
	 *
	 *	Van‘s trick is to deposit buffers into socket queue
	 *	on a device interrupt, to call tcp_recv function
	 *	on the receive process context and checksum and copy
	 *	the buffer to user space. smart...
	 *
	 *	Our current scheme is not silly either but we take the
	 *	extra cost of the net_bh soft interrupt processing...
	 *	We do checksum and copy also but from device to kernel.
	 */

	tp->rx_opt.saw_tstamp = 0;

	/*	pred_flags is 0xS?10 << 16 + snd_wnd
	 *	if header_prediction is to be made
	 *	‘S‘ will always be tp->tcp_header_len >> 2
	 *	‘?‘ will be 0 for the fast path, otherwise pred_flags is 0 to
	 *  turn it off	(when there are holes in the receive
	 *	 space for instance)
	 *	PSH flag is ignored.
	 */

	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
		int tcp_header_len = tp->tcp_header_len;

		/* Timestamp header prediction: tcp_header_len
		 * is automatically equal to th->doff*4 due to pred_flags
		 * match.
		 */

		/* Check timestamp */
		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
			/* No? Slow path! */
			if (!tcp_parse_aligned_timestamp(tp, th))
				goto slow_path;

			/* If PAWS failed, check it more carefully in slow path */
			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
				goto slow_path;

			/* DO NOT update ts_recent here, if checksum fails
			 * and timestamp was corrupted part, it will result
			 * in a hung connection since we will drop all
			 * future packets due to the PAWS test.
			 */
		}

		if (len <= tcp_header_len) {
			/* Bulk data transfer: sender */
			if (len == tcp_header_len) {
				/* Predicted packet is in window by definition.
				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
				 * Hence, check seq<=rcv_wup reduces to:
				 */
				if (tcp_header_len ==
				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
				    tp->rcv_nxt == tp->rcv_wup)
					tcp_store_ts_recent(tp);

				/* We know that such packets are checksummed
				 * on entry.
				 */
				tcp_ack(sk, skb, 0);
				__kfree_skb(skb);
				tcp_data_snd_check(sk);
				/* When receiving pure ack in fast path, update
				 * last ts ecr directly instead of calling
				 * tcp_rcv_rtt_measure_ts()
				 */
				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
				return;
			} else { /* Header too small */
				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
				goto discard;
			}
		} else {
			int eaten = 0;
			bool fragstolen = false;

			if (tcp_checksum_complete(skb))
				goto csum_error;

			if ((int)skb->truesize > sk->sk_forward_alloc)
				goto step5;

			/* Predicted packet is in window by definition.
			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
			 * Hence, check seq<=rcv_wup reduces to:
			 */
			if (tcp_header_len ==
			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
			    tp->rcv_nxt == tp->rcv_wup)
				tcp_store_ts_recent(tp);

			tcp_rcv_rtt_measure_ts(sk, skb);

			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);

			/* Bulk data transfer: receiver */
			__skb_pull(skb, tcp_header_len);
			eaten = tcp_queue_rcv(sk, skb, &fragstolen);

			tcp_event_data_recv(sk, skb);

			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
				/* Well, only one small jumplet in fast path... */
				tcp_ack(sk, skb, FLAG_DATA);
				tcp_data_snd_check(sk);
				if (!inet_csk_ack_scheduled(sk))
					goto no_ack;
			}

			__tcp_ack_snd_check(sk, 0);
no_ack:
			if (eaten)
				kfree_skb_partial(skb, fragstolen);
			tcp_data_ready(sk);
			return;
		}
	}

slow_path:
	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
		goto csum_error;

	if (!th->ack && !th->rst && !th->syn)
		goto discard;

	/*
	 *	Standard slow path.
	 */

	if (!tcp_validate_incoming(sk, skb, th, 1))
		return;

step5:
	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
		goto discard;

	tcp_rcv_rtt_measure_ts(sk, skb);

	/* Process urgent data. */
	tcp_urg(sk, skb, th);

	/* step 7: process the segment text */
	tcp_data_queue(sk, skb);

	tcp_data_snd_check(sk);
	tcp_ack_snd_check(sk);
	return;

csum_error:
	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);

discard:
	tcp_drop(sk, skb);
}
EXPORT_SYMBOL(tcp_rcv_established);

在tcp_rcv_established这个函数中,涉及到的逻辑比较复杂,涉及到一系列的标志位检查,状态处理的过程,当然这也是tcp协议必须保证的一个特征。到最后返回值里面,有一个tcp_queue_rcv函数,查看这个函数:

static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
				      bool *fragstolen)
{
	int eaten;
	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);

	eaten = (tail &&
		 tcp_try_coalesce(sk, tail,
				  skb, fragstolen)) ? 1 : 0;
	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
	if (!eaten) {
		__skb_queue_tail(&sk->sk_receive_queue, skb);
		skb_set_owner_r(skb, sk);
	}
	return eaten;
}

struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);这个语句表明将发送的消息添加到队列的最尾端,即相当于发送之后进行系统调用唤醒socket(一切正常的情况下),然后再利用应用层的tcp_recvmsg函数去进行消息的处理。

下面进行断点追踪调试验证:

技术分享图片
技术分享图片

3.4、应用层

1.每当用户应用调用 read 或者 recvfrom 时,该调用会被映射为/net/socket.c 中的 sys_recv 系统调用,并被转化为 sys_recvfrom 调用,然后调用 sock_recgmsg 函数。

2.对于 INET 类型的 socket,/net/ipv4/af inet.c 中的 inet_recvmsg 方法会被调用,它会调用相关协议的数据接收方法。

3.对TCP 来说,调用 tcp_recvmsg。该函数从 socket buffer 中拷贝数据到 user buffer。

4.对UDP 来说,从 user space 中可以调用三个 system call recv()/recvfrom()/recvmsg() 中的任意一个来接收 UDP package,这些系统调用最终都会调用内核中的 udp_recvmsg 方法。

下面进行源码分析:

对于recv函数,也是recvfrom的特殊情况,调用的也就是__sys_recvfrom,整个函数的调用路径与send在应用层的情况非常类似:

int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
            struct sockaddr __user *addr, int __user *addr_len)
 {
     struct socket *sock;
  
     struct iovec iov;
 
     struct msghdr msg;
 
     struct sockaddr_storage address;

     int err, err2;
 
     int fput_needed;
     
     err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
		if (unlikely(err))
			return err;
		sock = sockfd_lookup_light(fd, &err, &fput_needed);
		if (!sock)
			goto out;
		msg.msg_control = NULL;
		msg.msg_controllen = 0;
		/* Save some cycles and don‘t copy the address if not needed */
		msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
		/* We assume all kernel code knows the size of sockaddr_storage */
		msg.msg_namelen = 0;
		msg.msg_iocb = NULL;
		msg.msg_flags = 0;
		if (sock->file->f_flags & O_NONBLOCK)
 
        flags |= MSG_DONTWAIT;
 
       err = sock_recvmsg(sock, &msg, flags);

    if (err >= 0 && addr != NULL) {
 
         err2 = move_addr_to_user(&address,
 
                      msg.msg_namelen, addr, addr_len);

         if (err2 < 0)
             err = err2;
     }
 
     fput_light(sock->file, fput_needed);

 out:
 
    return err;
 
 }

定位到了sock_recvmsg函数:

int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
  
  {
  
      int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 
     return err ?: sock_recvmsg_nosec(sock, msg, flags);
 
 }
 
 EXPORT_SYMBOL(sock_recvmsg);
 
 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
                      int flags)
 {
 
     return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 
                   inet_recvmsg, sock, msg, msg_data_left(msg), flags);
 
 }

sock->ops->recvmsg即inet_recvmsg,最后在inet_recvmsg中调用的是tcp_recvmsg:

int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
		 int flags)
{
	struct sock *sk = sock->sk;
	int addr_len = 0;
	int err;

	if (likely(!(flags & MSG_ERRQUEUE)))
		sock_rps_record_flow(sk);

	err = INDIRECT_CALL_2(sk->sk_prot->recvmsg, tcp_recvmsg, udp_recvmsg,
			      sk, msg, size, flags & MSG_DONTWAIT,
			      flags & ~MSG_DONTWAIT, &addr_len);
	if (err >= 0)
		msg->msg_namelen = addr_len;
	return err;
}
EXPORT_SYMBOL(inet_recvmsg);

下面进行gdb断点调试验证:

技术分享图片

可以看出,这个执行的过程和send的过程有着惊人的相似,这也符合socketAPI对称的特点,在使用和编程的过程中,具有很强的一致性,也便于开发人员进行维护。

4、时序图

技术分享图片

TCP/IP 协议栈在 Linux 内核中的运行时序分析

原文:https://www.cnblogs.com/lixibairuosu/p/14347842.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!