首页 > 其他 > 详细

【SFT】Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform

时间:2021-02-02 17:27:39      阅读:34      评论:0      收藏:0      [点我收藏+]

论文: https://arxiv.org/pdf/1804.02815.pdf
主页:http://mmlab.ie.cuhk.edu.hk/projects/SFTGAN/
代码:https://github.com/xinntao/SFTGAN

贡献点:

  1. 提出了SFT层

    In this paper, we show that it is possible to recover textures faithful to semantic classes.[semantic priors]
    Our final results show that an SR network equipped with SFT can generate more realistic and visually pleasing textures in comparison to state-of-the-art SRGAN [27] and EnhanceNet [38].

    基于语义类别分类来恢复细节,并且加了SFT的SR网络会得到更加真实和视觉上更好的纹理。

  2. 对SR中一些loss进行了分析和探讨。

    conventional pixel-wise mean squared error (MSE) loss [7] that tends to encourage blurry and overly-smoothed results
    adversarial loss to encourage the network to favor solutions that look more like natural images
    基于像素的损失会导致图像模糊和平滑;使用perceptual loss对特征维度进行优化,结合adversarial loss能得到更自然的结果

思路:

applying an affine transformation spatially to each intermediate feature maps in an SR network

技术分享图片

【SFT】Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform

原文:https://www.cnblogs.com/wioponsen/p/14362879.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!