题目大意:求由矩阵 A构成的矩阵 S = A + A^2 + A^3 + … + A^k。k的取值范围是:10^9数据很大,应该二分。
对于一个k来说,s(k) = (1+A^(k/2)) *( A+A^2+……+A^(k/2))。如果k为奇数的话需要加上A^(k/2 + 1)。
所以二分求和,复杂度就降下来了,当然还得用到矩阵快速幂。
Time Limit: 3000MS | Memory Limit: 131072K | |
Total Submissions: 15477 | Accepted: 6621 |
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing nnonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4 0 1 1 1
Sample Output
1 2 2 3
#include <algorithm> #include <iostream> #include <stdlib.h> #include <string.h> #include <iomanip> #include <stdio.h> #include <string> #include <queue> #include <cmath> #include <stack> #include <map> #include <set> #define eps 1e-10 ///#define M 1000100 #define LL __int64 ///#define LL long long ///#define INF 0x7ffffff #define INF 0x3f3f3f3f #define PI 3.1415926535898 #define zero(x) ((fabs(x)<eps)?0:x) ///#define mod 9973 int mod; const int maxn = 2010; using namespace std; struct matrix { int f[40][40]; }; matrix mul(matrix a, matrix b, int n)///矩阵乘法 { matrix c; memset(c.f, 0, sizeof(c.f)); for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { for(int k = 0; k < n; k++) c.f[i][j] += a.f[i][k]*b.f[k][j]; c.f[i][j] %= mod; } } return c; } matrix pow_mod(matrix a, int b, int n)///矩阵快速幂 { matrix s; memset(s.f, 0 , sizeof(s.f)); for(int i = 0; i < n; i++) s.f[i][i] = 1; while(b) { if(b&1) s = mul(s, a, n); a = mul(a, a, n); b >>= 1; } return s; } matrix Add(matrix a,matrix b, int n) ///矩阵加法 { matrix c; for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { c.f[i][j] = a.f[i][j]+b.f[i][j]; c.f[i][j] %= mod; } } return c; } matrix Matrix_Sum(matrix a, int k, int n) { if(k == 1) return a; matrix dx,dy; dx = Matrix_Sum(a, k/2, n);///二分,递归; if(k&1) { dy = pow_mod(a, k/2+1, n); dx = Add(dx, mul(dx, dy, n), n); dx = Add(dy,dx, n); } else { dy = pow_mod(a, k/2, n); dx = Add(dx,mul(dx, dy, n), n); } return dx; } int main() { int n, k; while(cin >>n>>k>>mod) { matrix c; for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { scanf("%d",&c.f[i][j]); c.f[i][j] %= mod; } } matrix d = Matrix_Sum(c, k, n); for(int i = 0; i < n; i++) { for(int j = 0; j < n-1; j++) cout<<d.f[i][j]<<" "; cout<<d.f[i][n-1]<<endl; } } return 0; }
POJ 3233 Matrix Power Series(矩阵+二分)
原文:http://blog.csdn.net/xu12110501127/article/details/39403287