决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法
怎么理解这句话?通过一个对话例子
想一想这个女生为什么把年龄放在最上面判断!!!!!!!!!
为了更好理解决策树具体怎么分类的,我们通过一个问题例子?
有可能你的划分是这样的
那么我们怎么知道这些特征哪个更好放在最上面,那么决策树的真是划分是这样的
H的专业术语称之为信息熵,单位为比特
当我们得到的额外信息(球队历史比赛情况等等)越多的话,那么我们猜测的代价越小(猜测的不确定性减小)
特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,即公式为:
公式的详细解释:
注:信息增益表示得知特征X的信息而息的不确定性减少的程度使得类Y的信息熵减少的程度
原文:https://www.cnblogs.com/a155-/p/14387388.html