在自由空间中,可定义粒子的空间平移算符和动量平移算符,即\(\text{e}^{-\frac{\text{i}}{\hbar} \hat{p}x_0}\)和\(\text{e}^{-\frac{\text{i}}{\hbar} \hat{x}p_0}\),分别对应位置本征态和动量本征态的升降[1]。在晶格中不存在连续的空间平移对称性,但存在晶格平移对称性,且晶格平移算符的本征态就是Bloch函数,于是可以把该算符\(\tilde{p}\)定义为[2,3,4]
\[\langle n‘{\bf p}‘|\tilde{\bf p}|n{\bf p}\rangle=\delta_{nn‘}\delta({\bf p}‘-{\bf p}){\bf p}‘
\]
上式通过规定了该算符在Bloch态之间的矩阵元,定义了该算符。通过上式,考虑到Bloch函数正交性也可以将其写为
\[\tilde{{\bf p}}=\sum_n\int\text{d}^3{\bf p}|n{\bf p}\rangle {\bf p}\langle n{\bf p}|
\]
考虑坐标算符\(\bf x\)在Bloch态之间的矩阵元\(\langle n{\bf k}|{\bf r}|l{\bf q}\rangle\),利用坐标表象计算得到
\[\langle n{\bf k}|{\bf r}|l{\bf q}\rangle=\int\text{d}^3{\bf r} \exp[\text{i}({\bf q}-{\bf k})\cdot {\bf r}]u^*_n({\bf k},{\bf r}){\bf {r}}u_l({\bf q},{\bf r})
\]
利用分部积分,上式可以写为
\[\langle n{\bf k}|{\bf r}|l{\bf q}\rangle=\text{i}\delta_{nn‘}\nabla_{\bf k}\delta({\bf k}-{\bf q})+X_{nl}\delta({\bf k}-{\bf q})
\]
其中
\[X_{nl}=\text{i}\frac{(3\pi)^3}{\Omega}\int\text{d}^3{\bf r}u_n^*({\bf k},{\bf r})\nabla_{\bf k}u_l({\bf k},{\bf r})
\]
令第一项所对应的算符为\(\tilde{\bf r}\),可以变换到Wannier表象来分析。利用
\[\langle b‘{\bf k}|b{\bf R}\rangle=\frac{\sqrt{\Omega}}{(2\pi)^{3/2}}\text{e}^{-\text{i}{\bf k}\cdot{\bf R}}\delta_{bb‘}
\]
这第一项可以改写为
\[\langle b‘{\bf R}‘|\tilde{\bf r}|b{\bf R}\rangle=\delta_{bb‘}\delta_{{\bf R},{\bf R}‘}{\bf {R}}
\]
利用Wannier态的正交归一性,上式可以写为
\[\tilde{\bf r}=\sum_{b,{\bf R}}|b,{\bf R}\rangle{\bf R}\langle b,{\bf R}|
\]
[1] 高等量子力学. 喀兴林
[2] [Article] The crystal momentum as a quantum mechanical operator, J CHEM PHYS 21, 2013 (1953).
[3] [Article] Relation between position and quasi-momentum operators in band theory, J. Phys. France 50 (1989)
[4] Joseph Callaway, Quantum theory of the solid state (1991), Chapter 6.
关于晶格动量和坐标算符
原文:https://www.cnblogs.com/immcrr/p/14399626.html