@
? 定义1
? 定义2
? 定理1 可导?左右导数存在且相等
? 定义3 若当△x→0时
可写成上面的形式,则称f(x)在点x0处可微,称A△x为微分,记作\(d y=A \Delta x\)
? 定理2 函数y=f(x)在点0处可微的充分必要条件为y=f(x)在点x0处可导,且有\(d y=f^{\prime}\left(x_{0}\right) \Delta x=f^{\prime}\left(x_{0}\right) d x\)
f(x)在x0处可导→f(x)在x0处连续(对)
f(x)在x0处可导→f‘(x)在x0处连续(错)
f(x)在x0处可导→\(\lim _{x \rightarrow x_{0}} f^{\prime}(x)\)存在(错)
f(x)n阶可导→洛必达法则用到n-1阶导数
f(x)n阶连续可导→洛必达法则用到n阶导数
只列举出几个
\(\left(a^{x}\right)^{\prime}=a^{x} \ln a\)
\(\left(\log _{a} x\right)^{\prime}=\frac{1}{\ln a}\)
\((\ln |x|)^{\prime}=\frac{1}{x}\)
\((\tan \theta)^{\prime}=\sec ^{2} \theta\)
\((\cot \theta)^{\prime}=-\csc ^{2} \theta\)
\((\sec \theta)^{\prime}=\sec \theta \tan \theta\)
\((\csc \theta)^{\prime}=-\csc \theta \cot \theta\)
\((\arccos \theta)^{\prime}=-\frac{1}{\sqrt{1-\theta^{2}}}\)
\((\arcsin \theta)^{\prime}=\frac{1}{\sqrt{1-\theta^{2}}}\)
\((\arctan \theta)^{\prime}=\frac{1}{1+\theta^{2}}\)
\((\operatorname{arccot} \theta)^{\prime}=-\frac{1}{1+\theta^{2}}\)
\(y^{(n)}=\left[f^{(n-1)}(x)\right]^{\prime}\)
若函数f(x)在x处n阶可导,则在点x的某领域内f(x)必定具有一切低于n阶的导数
\((\sin x)^{(n)}=\sin \left(x+n \bullet \frac{\pi}{2}\right)\)
\((\cos x)^{(n)}=\cos \left(x+n \bullet \frac{\pi}{2}\right)\)
\((\mu v)^{(n)}=\sum_{k=0}^{n} C_{n}^{k} \mu^{(k)} v^{(n-k)}\)
求解方法:
原文:https://www.cnblogs.com/ZHR-871837050/p/14407763.html