F‘(x)=f(x)
不定积分的几何意义就是原函数簇所表示的曲线
定理1 若f(x)在区间I上连续,则f(x)在区间I上一定存在原函数(\(\int_{a}^{x} f(t) d t\))
定理2 若f(x)在区间I上有第一类间断点,则f(x)在区间I上没有原函数
\(\left(\int f(x) d x\right)^{\prime}=f(x)\)
\(d \int f(x) d x=f(x) d x\)
\(\int f^{\prime}(x) d x=f(x)+C\)
\(\int d f(x)=f(x)+C\)
\(\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x\)
只列举几个
\(\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|+C\)
\(\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C\)
\(\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\ln \left(x+\sqrt{x^{2}-a^{2}}\right)+C\)
\(\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C\)
\(\int \sec x d x = \ln | \sec x + \tan x | + C\)
\(\int \csc x d x = - \ln | \csc x + \cot x | + C\)
若\(\int f(u) d u=F(u)+C\)
则\(\int f[\varphi(x)] \varphi^{\prime}(x) d x=F[\varphi(x)]+C\)
设\(x = \phi ( t )\)是单调的可导函数,且\(\phi ^ { \prime } ( t ) \neq 0\),又\(\int f [ \phi ( t ) ] \phi ^ { \prime } ( t ) d x = F ( t ) + C\)
则\(\int f ( x ) d x = F [ q ^ { - 1 } ( x ) ] + C\)
适用于两类不同函数相乘
令\(\sqrt { \frac { a x + b } { c x + d } } = t\)
原文:https://www.cnblogs.com/ZHR-871837050/p/14408810.html