In from datetime import datetime
In import pandas as pd
In date=datetime(2016,1,1)
In date=pd.Timestamp(date)
Out date Timestamp(‘2012-01-01 00:00:00‘)
In type(date)
Out pandas.tslib.Timestamp
In ts=pd.Series(1,index=[date])
In ts
Out 2016-01-01 1
dtype: int64
In ts.index
Out DatetimeIndex([‘2016-01-01‘],dtype=‘datetime[ns]‘freq=None)
In ts.index[0]
Out Timestamp(2016-01-01 00:00:00‘)
In dates[‘2016-01-01‘,‘2016-01-02‘,‘2016-01-03‘]
In ts=pd.Series([1,2,3],index=pd.to_datetime(dates))
In ts
Out
2016-01-01 1
2016-01-02 2
2016-01-03 3
dtype: int64
In ts.index
Out DatetimeIndex([‘2016-01-01‘,‘2016-01-02‘,‘2016-01-03‘],dtype=‘datetime64[ns]‘freq=None)
In ts.index[0]
Out Timestamp(‘2016-01-01 00:00:00‘)
In dates=[datetime(2016,1,1),datetime(2016,1,2),datetime(2016,1,3)]
In ts=pd.Series([1,2,3],index=dates)
In ts.index[0]
Out Timestamp(‘2016-01-01 00:00:00‘)
In ts[‘20160101‘]
Out 1
In ts[‘20160101‘]
Out 1
In ts[‘01/01/2016‘]
Out 1
In ts
Out
2016-01-01 0.003195
2016-01-02 -0.517593
2016-01-03 -0.812502
dtype: float64
In ts[‘2016‘]
Out
2016-01-01 0.003195
2016-01-02 -0.517593
2016-01-03 -0.812502
dtype: float64
In ts[‘2016-01‘:‘2016-02‘]
Out
2016-01-01 0.003195
2016-01-02 -0.517593
2016-01-03 -0.812502
dtype: float64
In ts.truncate(after=‘2016-01-02‘)
Out
2016-01-01 1
2016-01-02 2
dtype: int64
In ts.shift(-1)
Out
2016-01-01 2
2016-01-02 3
2016-01-03 NaN
dtype: float64
In rts=ts.resample(‘M‘,how=‘first‘) #‘M‘指每月的最后一天
Out
2016-01-31 1
Freq: M, dtype: int64
In rts=ts.resample(‘MS‘,how=‘first‘) #‘MS‘指每月的第一天
Out
2016-01-01 1
Freq: MS, dtype: int64
原文:https://www.cnblogs.com/jackie-ding/p/14416353.html