首页 > 其他 > 详细

时间序列 TimeSeries

时间:2021-02-19 17:05:42      阅读:17      评论:0      收藏:0      [点我收藏+]

In  from datetime import datetime
In  import pandas as pd
In  date=datetime(2016,1,1)
In  date=pd.Timestamp(date)
Out  date Timestamp(‘2012-01-01 00:00:00‘)

 

In     type(date)
Out  pandas.tslib.Timestamp

 

In     ts=pd.Series(1,index=[date])
In     ts
Out  2016-01-01   1
dtype: int64

 

In     ts.index
Out  DatetimeIndex([‘2016-01-01‘],dtype=‘datetime[ns]‘freq=None)

 

In     ts.index[0]
Out  Timestamp(2016-01-01 00:00:00‘)

 

In     dates[‘2016-01-01‘,‘2016-01-02‘,‘2016-01-03‘]
In     ts=pd.Series([1,2,3],index=pd.to_datetime(dates))
In     ts

Out

2016-01-01   1
2016-01-02   2
2016-01-03   3
dtype: int64

 

In     ts.index
Out  DatetimeIndex([‘2016-01-01‘,‘2016-01-02‘,‘2016-01-03‘],dtype=‘datetime64[ns]‘freq=None)

 


In     ts.index[0]
Out  Timestamp(‘2016-01-01 00:00:00‘)

 

In     dates=[datetime(2016,1,1),datetime(2016,1,2),datetime(2016,1,3)]
In     ts=pd.Series([1,2,3],index=dates)
In     ts.index[0]
Out  Timestamp(‘2016-01-01 00:00:00‘)

 

In     ts[‘20160101‘]
Out  1
In     ts[‘20160101‘]
Out  1
In     ts[‘01/01/2016‘]
Out  1

 

In     ts

Out
2016-01-01 0.003195
2016-01-02 -0.517593
2016-01-03 -0.812502
dtype: float64

 

In     ts[‘2016‘]

Out
2016-01-01 0.003195
2016-01-02 -0.517593
2016-01-03 -0.812502
dtype: float64

 

In     ts[‘2016-01‘:‘2016-02‘]

Out
2016-01-01 0.003195
2016-01-02 -0.517593
2016-01-03 -0.812502
dtype: float64

 

In     ts.truncate(after=‘2016-01-02‘)

Out
2016-01-01 1
2016-01-02 2
dtype: int64

 

In     ts.shift(-1)

Out
2016-01-01 2
2016-01-02 3
2016-01-03 NaN
dtype: float64

 

In     rts=ts.resample(‘M‘,how=‘first‘) #‘M‘指每月的最后一天

Out
2016-01-31 1
Freq: M, dtype: int64

 

In     rts=ts.resample(‘MS‘,how=‘first‘) #‘MS‘指每月的第一天

Out
2016-01-01 1
Freq: MS, dtype: int64

时间序列 TimeSeries

原文:https://www.cnblogs.com/jackie-ding/p/14416353.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!