图的遍历算法是求解图的连通性问题、拓扑排序和求关键路径等算法的基础。
通常有两种遍历图的方式:广度优先和深度优先(有无向图和有向图都适用),下面以有向图为例给出基于python的两种实现。
已知图如下所示:
from collections import deque VISITED = [] # breadth first search def bfs(d): VISITED.append("v1") q = deque() q += d["v1"] while q: item = q.popleft() # first in first out if item not in VISITED: VISITED.append(item) q += d[item] if __name__ == "__main__": d = {} d["v1"] = ["v2", "v3"] d["v2"] = ["v4", "v5"] d["v3"] = ["v6", "v7"] d["v4"] = ["v8"] d["v5"] = ["v8"] d["v6"] = ["v7"] d["v7"] = [] d["v8"] = [] bfs(d) print(VISITED) # [‘v1‘, ‘v2‘, ‘v3‘, ‘v4‘, ‘v5‘, ‘v6‘, ‘v7‘, ‘v8‘]
深度优先搜索存在一个回溯的过程,所以使用递归来实现,因为递归本身保存了调用栈。
VISITED = [] def recurse(items, d): if not items: return None for item in items: if item not in VISITED: VISITED.append(item) recurse(d[item], d) # depth first search def dfs(d): VISITED.append("v1") recurse(d["v1"], d) if __name__ == "__main__": d = {} d["v1"] = ["v2", "v3"] d["v2"] = ["v4", "v5"] d["v3"] = ["v6", "v7"] d["v4"] = ["v8"] d["v5"] = ["v8"] d["v6"] = ["v7"] d["v7"] = [] d["v8"] = [] dfs(d) print(VISITED) # [‘v1‘, ‘v2‘, ‘v4‘, ‘v8‘, ‘v5‘, ‘v3‘, ‘v6‘, ‘v7‘]
原文:https://www.cnblogs.com/standby/p/14420278.html