首页 > 其他 > 详细

Kafka面试题

时间:2021-02-28 21:48:28      阅读:26      评论:0      收藏:0      [点我收藏+]

1.Kafka的用途有哪些?使用场景如何?

  • 消息队列。都具备系统解耦、冗余存储、流量削峰、缓冲、异步通信、扩展性、可恢复性等功能
  • 存储系统。Kafka 把消息持久化到磁盘,相比于其他基于内存存储的系统而言,有效地降低了数据丢失的风险。
  • 流式处理平台。Kafka 不仅为每个流行的流式处理框架提供了可靠的数据来源,还提供了一个完整的流式处理类库,比如窗口、连接、变换和聚合等各类操作

 

2. Kafka中的ISR、AR、OSR又代表什么?ISR的伸缩又指什么?

AR:分区中的所有副本统称

ISR:(In-Sync-Replicas)与leader副本保持一定程度的同步(包括leader)

OSR:(Out-Sync-Replicas) 不是ISR的副本

 

ISR的伸缩性:

leader 副本负责维护和跟踪 ISR 集合中所有 follower 副本的滞后状态,当 follower 副本落后太多或失效时,leader 副本会把它从 ISR 集合中剔除如果 OSR 集合中有 follower 副本“追上”了 leader 副本,那么 leader 副本会把它从 OSR 集合转移至 ISR 集合。默认情况下,当 leader 副本发生故障时,只有在 ISR 集合中的副本才有资格被选举为新的 leader,而在 OSR 集合中的副本则没有任何机会(不过这个原则也可以通过修改相应的参数配置来改变)。

 

replica.lag.time.max.ms : 这个参数的含义是 Follower 副本能够落后 Leader 副本的最长时间间隔,当前默认值是 10 秒。

 

unclean.leader.election.enable:是否允许 Unclean 领导者选举。开启 Unclean 领导者选举可能会造成数据丢失,但好处是,它使得分区 Leader 副本一直存在,不至于停止对外提供服务,因此提升了高可用性。

 

3. Kafka中的HW、LEO、LSO、LW等分别代表什么?

HW 是 High Watermark 的缩写,俗称高水位,它标识了一个特定的消息偏移量(offset),消费者只能拉取到这个 offset 之前的消息

LSO 是LogStartOffset 日志文件起始偏移量

LEO 是LogEndOffset 当前日志文件中下一条待写入消息的 offset + 1。分区 ISR 集合中的每个副本都会维护自身的 LEO,而 ISR 集合中最小的 LEO 即为分区的 HW,对消费者而言只能消费 HW 之前的消息。

LW  是 Low Watermark 的缩写,俗称“低水位”,代表 AR 集合中最小的 logStartOffset 值。副本的拉取请求(FetchRequest,它有可能触发新建日志分段而旧的被清理,进而导致 logStartOffset 的增加)和删除消息请求(DeleteRecordRequest)都有可能促使 LW 的增长。

 

4. Kafka中是怎么体现消息顺序性的?

kafka 只能保证分区内有序,无法保证全局有序

  • 生产者:通过分区的leader副本负责数据顺序写入,来保证消息顺序性
  • 消费者:同一个分区内的消息只能被一个group里的一个消费者消费,保证分区内消费有序

kafka 的每一条消息是追加到日志文件后面

 

5. Kafka 的一条消息如何确定发往的分区?

  • 代码当中指定了消息要发送的分区
  • 当消息使用默认的分区器时,如果消息指定了key,则按哈希来确定。Math.abs(key.hashCode()) % partitions.size();
  • 如果消息没有key,则使用轮询的方式来指定分区
  • 使用自定义分区器

 

6.Kafka中的分区器、序列化器、拦截器是否了解?它们之间的处理顺序是什么?

  • 序列化器:生产者需要用序列化器(Serializer)把对象转换成字节数组才能通过网络发送给 Kafka。而在对侧,消费者需要用反序列化器(Deserializer)把从 Kafka 中收到的字节数组转换成相应的对象
  • 分区器:分区器的作用就是为消息分配分区。(参考消息发送的分区)
  • 拦截器:产者拦截器和消费者拦截器
  • 生产者拦截器既可以用来在消息发送前做一些准备工作,比如按照某个规则过滤不符合要求的消息、修改消息的内容等
  • 消费者拦截器主要在消费到消息或在提交消费位移时进行一些定制化的操作。

处理顺序是:

拦截器 -> 序列化器 -> 分区器

 

7. Kafka生产者客户端的整体结构是什么样子的?

技术分享图片

 

 

 整个生产者客户端由两个线程协调运行,这两个线程分别为主线程 Sender 线程(发送线程)
在主线程中由 KafkaProducer 创建消息,然后通过可能的拦截器、序列化器和分区器的作用之后缓存到消息累加器(RecordAccumulator,也称为消息收集器)中
Sender 线程负责从 RecordAccumulator 中获取消息并将其发送到 Kafka 中
RecordAccumulator 主要用来缓存消息以便 Sender 线程可以批量发送,进而减少网络传输的资源消耗以提升性能

 

8. Kafka的旧版Scala的消费者客户端的设计有什么缺陷?

老版本的 Consumer Group 把位移保存在 ZooKeeper 中。Apache ZooKeeper 是一个分布式的协调服务框架,Kafka 重度依赖它实现各种各样的协调管理。将位移保存在 ZooKeeper 外部系统的做法,最显而易见的好处就是减少了 Kafka Broker 端的状态保存开销。

ZooKeeper 这类元框架其实并不适合进行频繁的写更新,而 Consumer Group 的位移更新却是一个非常频繁的操作。这种大吞吐量的写操作会极大地拖慢 ZooKeeper 集群的性能

 

9. 消费组中的消费者个数如果超过topic的分区,那么就会有消费者消费不到数据”这句话是否正确?如果正确,那么有没有什么hack的手段?

一般来说如果消费者过多,出现了消费者的个数大于分区个数的情况,就会有消费者分配不到任何分区。

开发者可以继承AbstractPartitionAssignor实现自定义消费策略,从而实现同一消费组内的任意消费者都可以消费订阅主题的所有分区:

ublic class BroadcastAssignor extends AbstractPartitionAssignor{
    @Override
    public String name() {
        return "broadcast";
    }

    private Map<String, List<String>> consumersPerTopic(
            Map<String, Subscription> consumerMetadata) {
        (具体实现请参考RandomAssignor中的consumersPerTopic()方法)
    }

    @Override
    public Map<String, List<TopicPartition>> assign(
            Map<String, Integer> partitionsPerTopic,
            Map<String, Subscription> subscriptions) {
        Map<String, List<String>> consumersPerTopic =
                consumersPerTopic(subscriptions);
        Map<String, List<TopicPartition>> assignment = new HashMap<>();
           //Java8
        subscriptions.keySet().forEach(memberId ->
                assignment.put(memberId, new ArrayList<>()));
           //针对每一个主题,为每一个订阅的消费者分配所有的分区
        consumersPerTopic.entrySet().forEach(topicEntry->{
            String topic = topicEntry.getKey();
            List<String> members = topicEntry.getValue();

            Integer numPartitionsForTopic = partitionsPerTopic.get(topic);
            if (numPartitionsForTopic == null || members.isEmpty())
                return;
            List<TopicPartition> partitions = AbstractPartitionAssignor
                    .partitions(topic, numPartitionsForTopic);
            if (!partitions.isEmpty()) {
                members.forEach(memberId ->
                        assignment.get(memberId).addAll(partitions));
            }
        });
        return assignment;
    }
}

 

注意组内广播的这种实现方式会有一个严重的问题—默认的消费位移的提交会失效。

 

10. 消费者提交消费位移时提交的是当前消费到的最新消息的offset还是offset+1?

在旧消费者客户端中,消费位移是存储在 ZooKeeper 中的。而在新消费者客户端中,消费位移存储在 Kafka 内部的主题__consumer_offsets 中。
当前消费者需要提交的消费位移是offset+1

 

11. 有哪些情形会造成重复消费?

  1. Rebalance
    一个consumer正在消费一个分区的一条消息,还没有消费完,发生了rebalance(加入了一个consumer),从而导致这条消息没有消费成功,rebalance后,另一个consumer又把这条消息消费一遍。
  2. 消费者端手动提交
    如果先消费消息,再更新offset位置,导致消息重复消费。
  3. 消费者端自动提交
    设置offset为自动提交,关闭kafka时,如果在close之前,调用 consumer.unsubscribe() 则有可能部分offset没提交,下次重启会重复消费。
  4. 生产者端
    生产者因为业务问题导致的宕机,在重启之后可能数据会重发

 

12. 有哪些情形会造成消息漏消费?

  1. 自动提交
    设置offset为自动定时提交,当offset被自动定时提交时,数据还在内存中未处理,此时刚好把线程kill掉,那么offset已经提交,但是数据未处理,导致这部分内存中的数据丢失。
  2. 生产者发送消息
    发送消息设置的是fire-and-forget(发后即忘),它只管往 Kafka 中发送消息而并不关心消息是否正确到达。不过在某些时候(比如发生不可重试异常时)会造成消息的丢失。这种发送方式的性能最高,可靠性也最差。
  3. 消费者端
    先提交位移,但是消息还没消费完就宕机了,造成了消息没有被消费。自动位移提交同理
  4. acks没有设置为all
    如果在broker还没把消息同步到其他broker的时候宕机了,那么消息将会丢失

 

13. KafkaConsumer是非线程安全的,那么怎么样实现多线程消费?

  1. 线程封闭,即为每个线程实例化一个 KafkaConsumer 对象

 

14. 简述消费者与消费组之间的关系

  1. Consumer Group 下可以有一个或多个 Consumer 实例。这里的实例可以是一个单独的进程,也可以是同一进程下的线程。在实际场景中,使用进程更为常见一些。
  2. Group ID 是一个字符串,在一个 Kafka 集群中,它标识唯一的一个 Consumer Group。
  3. Consumer Group 下所有实例订阅的主题的单个分区,只能分配给组内的某个 Consumer 实例消费。这个分区当然也可以被其他的 Group 消费

 

15. 当你使用kafka-topics.sh创建(删除)了一个topic之后,Kafka背后会执行什么逻辑?、

在执行完脚本之后,Kafka 会在 log.dir 或 log.dirs 参数所配置的目录下创建相应的主题分区,默认情况下这个目录为/tmp/kafka-logs/。

在 ZooKeeper 的/brokers/topics/目录下创建一个同名的实节点,该节点中记录了该主题的分区副本分配方案。示例如下:

 

16. topic的分区数可不可以增加?如果可以怎么增加?如果不可以,那又是为什么?

可以增加,使用 kafka-topics 脚本,结合 --alter 参数来增加某个主题的分区数,命令如下:

bin/kafka-topics.sh --bootstrap-server broker_host:port --alter --topic <topic_name> --partitions <新分区数>

 

当分区数增加时,就会触发订阅该主题的所有 Group 开启 Rebalance。
首先,Rebalance 过程对 Consumer Group 消费过程有极大的影响。在 Rebalance 过程中,所有 Consumer 实例都会停止消费,等待 Rebalance 完成。这是 Rebalance 为人诟病的一个方面。
其次,目前 Rebalance 的设计是所有 Consumer 实例共同参与,全部重新分配所有分区。其实更高效的做法是尽量减少分配方案的变动。

最后,Rebalance 实在是太慢了。

 

17. topic的分区数可不可以减少?如果可以怎么减少?如果不可以,那又是为什么?

不支持,因为删除的分区中的消息不好处理。如果直接存储到现有分区的尾部,消息的时间戳就不会递增,如此对于 Spark、Flink 这类需要消息时间戳(事件时间)的组件将会受到影响;如果分散插入现有的分区,那么在消息量很大的时候,内部的数据复制会占用很大的资源,而且在复制期间,此主题的可用性又如何得到保障?与此同时,顺序性问题、事务性问题,以及分区和副本的状态机切换问题都是不得不面对的。

 

18. 创建topic时如何选择合适的分区数?

在 Kafka 中,性能与分区数有着必然的关系,在设定分区数时一般也需要考虑性能的因素。对不同的硬件而言,其对应的性能也会不太一样。
可以使用Kafka 本身提供的用于生产者性能测试的 kafka-producer- perf-test.sh 和用于消费者性能测试的 kafka-consumer-perf-test.sh来进行测试。
增加合适的分区数可以在一定程度上提升整体吞吐量,但超过对应的阈值之后吞吐量不升反降。如果应用对吞吐量有一定程度上的要求,则建议在投入生产环境之前对同款硬件资源做一个完备的吞吐量相关的测试,以找到合适的分区数阈值区间。
分区数的多少还会影响系统的可用性。如果分区数非常多,如果集群中的某个 broker 节点宕机,那么就会有大量的分区需要同时进行 leader 角色切换,这个切换的过程会耗费一笔可观的时间,并且在这个时间窗口内这些分区也会变得不可用。
分区数越多也会让 Kafka 的正常启动和关闭的耗时变得越长,与此同时,主题的分区数越多不仅会增加日志清理的耗时,而且在被删除时也会耗费更多的时间。

 

19. Kafka目前有哪些内部topic,它们都有什么特征?各自的作用又是什么?

__consumer_offsets:作用是保存 Kafka 消费者的位移信息
__transaction_state:用来存储事务日志消息

 

20. 优先副本是什么?它有什么特殊的作用?

所谓的优先副本是指在AR集合列表中的第一个副本。
理想情况下,优先副本就是该分区的leader 副本,所以也可以称之为 preferred leader。Kafka 要确保所有主题的优先副本在 Kafka 集群中均匀分布,这样就保证了所有分区的 leader 均衡分布。以此来促进集群的负载均衡,这一行为也可以称为“分区平衡”。

 

21. Kafka有哪几处地方有分区分配的概念?简述大致的过程及原理

  1. 生产者的分区分配是指为每条消息指定其所要发往的分区。可以编写一个具体的类实现org.apache.kafka.clients.producer.Partitioner接口。
  2. 消费者中的分区分配是指为消费者指定其可以消费消息的分区。Kafka 提供了消费者客户端参数 partition.assignment.strategy 来设置消费者与订阅主题之间的分区分配策略。
  3. 分区副本的分配是指为集群制定创建主题时的分区副本分配方案,即在哪个 broker 中创建哪些分区的副本。kafka-topics.sh 脚本中提供了一个 replica-assignment 参数来手动指定分区副本的分配方案。

 

22. 简述Kafka的日志目录结构?

技术分享图片

 

 

Kafka 中的消息是以主题为基本单位进行归类的,各个主题在逻辑上相互独立。每个主题又可以分为一个或多个分区。不考虑多副本的情况,一个分区对应一个日志(Log)。为了防止 Log 过大,Kafka 又引入了日志分段(LogSegment)的概念,将 Log 切分为多个 LogSegment,相当于一个巨型文件被平均分配为多个相对较小的文件。

Log 和 LogSegment 也不是纯粹物理意义上的概念,Log 在物理上只以文件夹的形式存储,而每个 LogSegment 对应于磁盘上的一个日志文件和两个索引文件,以及可能的其他文件(比如以“.txnindex”为后缀的事务索引文件)

转自:https://www.cnblogs.com/luozhiyun/p/11811835.html

Kafka面试题

原文:https://www.cnblogs.com/erlou96/p/14401394.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!