首页 > 其他 > 详细

01_复杂度

时间:2021-03-05 10:53:51      阅读:2      评论:0      收藏:0      [点我收藏+]

复杂度

概述

有些数据结构是专属于某一个算法的,加速这个算法或者是让这个算法流程变得更好

有些数据结构,如数组结构、二叉树结构,不是专属于某一个算法,而是组织数据的某一种结构

数据结构是算法的基础,底层支持

算法就是设计流程,在什么东西上设计流程,这个东西就是数据结构

评估算法优劣的核心指标

时间复杂度(流程决定)

额外空间复杂度(流程决定)

常数项时间(实现细节决定)

何为常数时间的操作

如果一个操作的执行时间不以具体样本量为转移,每次执行时间都是固定时间。称这样的操作为常数时间的操作。

常见的常数时间的操作

  • 算数运算(+ - * / %等)
  • 常见的位运算(>> >>> << | & ^)
  • 赋值、比较、自增、自减
  • 数组的寻址操作

总之,执行时间固定的操作都是常数时间的操作。

反之,执行时间不固定的操作,都不是常数时间的操作。

如何确定算法流程中的总操作数量与样本数量之间的表达式关系

1.想象该算法流程所处理的数据状况,要按照最差的情况来
2.把整个流程彻底拆分成为一个个基本动作,保证每个动作都是常数时间的操作
3.如果数据量为N,看看基本动作的数量和N是什么关系

如何确定算法流程的时间复杂度

当完成了表达式的建立,只要把最高阶项留下即可。低阶项都去掉,高阶项的系数也去掉。

记为:O(忽略掉系数的高阶项)

注意

  • 算法的过程,和具体的语言是无关的
  • 想分析一个算法流程的时间复杂度的前提,是对该流程非常熟悉
  • 一定要确保在拆分算法流程时,拆分出来的所有行为都是常数时间的操作。这意味着你写算法时,对自己的用过的每一个系统api,都非常的熟悉。否则会影响你对时间复杂度的估算。

时间复杂度的意义

抹掉了好多东西,只剩下了一个最高阶项啊…

那这个东西有什么意义呢?

时间复杂度的意义在于:

当我们要处理的样本量很大很大时,我们会发现低阶项是什么不是最重要的;每一项的系数是什么,不是最重要的。真正重要的就是最高阶项是什么。

这就是时间复杂度的意义,它是衡量算法流程的复杂程度的一种指标,该指标只与数据量有关,与过程之外的优化无关。

额外空间复杂度

你要实现一个算法流程,在实现算法流程的过程中,你需要开辟一些空间来支持你的算法流程。

作为输入参数的空间,不算额外空间。
作为输出结果的空间,也不算额外空间。

因为这些都是必要的、和现实目标有关的。所以都不算。

但除此之外,你的流程如果还需要开辟空间才能让你的流程继续下去。这部分空间就是额外空间。

如果你的流程只需要开辟有限几个变量,额外空间复杂度就是O(1)。

算法流程的常数项

我们会发现,时间复杂度这个指标,是忽略低阶项和所有常数系数的。

难道同样时间复杂度的流程,在实际运行时候就一样的好吗?

当然不是。

时间复杂度只是一个很重要的指标而已。如果两个时间复杂度一样的算法,你还要去在时间上拼优劣,就进入到拼常数时间的阶段,简称拼常数项。

算法流程的常数项的比拼方式

放弃理论分析,生成随机数据直接测。

为什么不去理论分析?

不是不能纯分析,而是没必要。因为不同常数时间的操作,虽然都是固定时间,但还是有快慢之分的。

比如,位运算的常数时间原小于算术运算的常数时间,这两个运算的常数时间又远小于数组寻址的时间。

所以如果纯理论分析,往往会需要非常多的分析过程。都已经到了具体细节的程度,莫不如交给实验数据好了。

面试、比赛、刷题中,一个问题的最优解是什么意思?

一般情况下,认为解决一个问题的算法流程,在时间复杂度的指标上,一定要尽可能的低,先满足了时间复杂度最低这个指标之后,使用最少的空间的算法流程,叫这个问题的最优解。

一般说起最优解都是忽略掉常数项这个因素的,因为这个因素只决定了实现层次的优化和考虑,而和怎么解决整个问题的思想无关。

算法和数据结构学习的大脉络

  • 知道怎么算的算法
  • 知道怎么试的算法

我们所有的题目讲解,对于大脉络的实践贯穿始终

01_复杂度

原文:https://www.cnblogs.com/forcee/p/14484363.html

(0)
(0)
   
举报
评论 一句话评论(0
© 2014 bubuko.com 版权所有 鲁ICP备09046678号-4
打开技术之扣,分享程序人生!
             

鲁公网安备 37021202000002号