浪院长 浪尖聊大数据
今天,主要想聊聊spark streaming的使用心得。
主要是转换算子,action,和状态算子,这些其实,就按照api手册或者源码里接口介绍结合业务来编码。
其实,想用好spark streaming 掌握spark core,spark rpc,spark 任务调度,spark 并行度等原理还非常有必要。
说到中间算子大家肯定都会想到UpdateStateByKey等状态。里面很多注意事项,比如顺序性,key的超时机制维护。这个适合数据量不多,尤其是key的维度不多,value不大的情况。
当然数据量上来了,要想维护中间状态怎么办?其实这个时候肯定是第三方存储,比如redis,alluxio。redis更适合那种key带超时机制的,并且数据量肯定不能过大。而alluxio就很适合那种高吞吐量的,比如去重统计。
direct streaming能保证仅一次处理,但是要求输出存储支持密等性,或者主动将结果更改为存在更新不存在插入。当然,如果外部存储系统支持事务那就更嗨,能实现恰一次处理。
实际上在offset维护这个层面上,spark streaming 不同版本于kafka不同版本结合实现有很大不同。
我觉得对于监控告警及故障自动恢复,重要程度不亚于业务场景。因为再好的业务实现,架不住系统挂掉你不知道。因为你总不能二十四小时盯着系统。而且很多公司对故障自动恢复都有kpi,比如3min,人工去检测故障并恢复不太可能,需要自己实现一套监控系统。
调优对于spark streaming非常重要,因为一个批次处理延迟就会导致job堆积,结果输出延迟,深圳任务挂掉数据丢失。调优其实最注重对spark 原理把控,数据量的了解及资源和数据的关系。
源码阅读,为了帮助大家更透彻的理解原理。主要会分三块:
spark streaming 与kafka-0.8.2 direct stream。
spark streaming 与kafka-0.8.2 receiver based stream。
spark streaming 与kafka-0.10.2 direct api。
原文:https://blog.51cto.com/15127544/2665109