首页 > 数据库技术 > 详细

Spark SQL从入门到精通

时间:2021-03-19 08:50:25      阅读:47      评论:0      收藏:0      [点我收藏+]
Spark SQL从入门到精通

浪尖 浪尖聊大数据
本文主要是帮助大家从入门到精通掌握spark sql。篇幅较长,内容较丰富建议大家收藏,仔细阅读。

更多大数据,spark教程,请点击 阅读原文 加入浪尖知识星球获取。

微信群可以加浪尖微信 158570986 。

发家史

熟悉spark sql的都知道,spark sql是从shark发展而来。Shark为了实现Hive兼容,在HQL方面重用了Hive中HQL的解析、逻辑执行计划翻译、执行计划优化等逻辑,可以近似认为仅将物理执行计划从MR作业替换成了Spark作业(辅以内存列式存储等各种和Hive关系不大的优化);
同时还依赖Hive Metastore和Hive SerDe(用于兼容现有的各种Hive存储格式)。
Spark SQL在Hive兼容层面仅依赖HQL parser、Hive Metastore和Hive SerDe。也就是说,从HQL被解析成抽象语法树(AST)起,就全部由Spark SQL接管了。执行计划生成和优化都由Catalyst负责。借助Scala的模式匹配等函数式语言特性,利用Catalyst开发执行计划优化策略比Hive要简洁得多。
Spark SQL
技术分享图片
spark sql提供了多种接口:

  1. 纯Sql 文本

  2. dataset/dataframe api

当然,相应的,也会有各种客户端:

sql文本,可以用thriftserver/spark-sql

编码,Dataframe/dataset/sql

Dataframe/Dataset API简介

Dataframe/Dataset也是分布式数据集,但与RDD不同的是其带有schema信息,类似一张表。
可以用下面一张图详细对比Dataset/dataframe和rdd的区别:
技术分享图片
Dataset是在spark1.6引入的,目的是提供像RDD一样的强类型、使用强大的lambda函数,同时使用spark sql的优化执行引擎。到spark2.0以后,DataFrame变成类型为Row的Dataset,即为:


type DataFrame = Dataset[Row]

技术分享图片
所以,很多移植spark1.6及之前的代码到spark2+的都会报错误,找不到dataframe类。

基本操作


val df = spark.read.json(“file:///opt/meitu/bigdata/src/main/data/people.json”)
df.show()
import spark.implicits._
df.printSchema()
df.select("name").show()
df.select($"name", $"age" + 1).show()
df.filter($"age" > 21).show()
df.groupBy("age").count().show()
spark.stop()

分区分桶 排序


分桶排序保存hive表
df.write.bucketBy(42,“name”).sortBy(“age”).saveAsTable(“people_bucketed”)
分区以parquet输出到指定目录
df.write.partitionBy("favorite_color").format("parquet").save("namesPartByColor.parquet")
分区分桶保存到hive表
df.write .partitionBy("favorite_color").bucketBy(42,"name").saveAsTable("users_partitioned_bucketed")

cube rullup pivot


cube
sales.cube("city", "year”).agg(sum("amount")as "amount”) .show()
rull up
sales.rollup("city", "year”).agg(sum("amount")as "amount”).show()
pivot 只能跟在groupby之后
sales.groupBy("year").pivot("city",Seq("Warsaw","Boston","Toronto")).agg(sum("amount")as "amount”).show()

SQL编程

Spark SQL允许用户提交SQL文本,支持一下三种手段编写sql文本:

  1. spark 代码
  2. spark-sql的shell
  3. thriftserver
    支持Spark SQL自身的语法,同时也兼容HSQL。

    1. 编码

    要先声明构建SQLContext或者SparkSession,这个是SparkSQL的编码入口。早起的版本使用的是SQLContext或者HiveContext,spark2以后,建议使用的是SparkSession。


1. SQLContext
new SQLContext(SparkContext)

2. HiveContext
new HiveContext(spark.sparkContext)

3. SparkSession
不使用hive元数据:
val spark = SparkSession.builder()
 .config(sparkConf) .getOrCreate()
使用hive元数据
val spark = SparkSession.builder()
 .config(sparkConf) .enableHiveSupport().getOrCreate()

使用


val df =spark.read.json("examples/src/main/resources/people.json") 
df.createOrReplaceTempView("people") 
spark.sql("SELECT * FROM people").show()

2. spark-sql脚本

spark-sql 启动的时候类似于spark-submit 可以设置部署模式资源等,可以使用
bin/spark-sql –help 查看配置参数。
需要将hive-site.xml放到${SPARK_HOME}/conf/目录下,然后就可以测试


show tables;

select count(*) from student;

3. thriftserver

thriftserver jdbc/odbc的实现类似于hive1.2.1的hiveserver2,可以使用spark的beeline命令来测试jdbc server。


安装部署
1). 开启hive的metastore
bin/hive --service metastore 
2). 将配置文件复制到spark/conf/目录下
3). thriftserver
sbin/start-thriftserver.sh --masteryarn  --deploy-mode client
对于yarn只支持client模式
4). 启动bin/beeline
5). 连接到thriftserver
!connect jdbc:hive2://localhost:10001

用户自定义函数

1. UDF

定义一个udf很简单,例如我们自定义一个求字符串长度的udf。.


val len = udf{(str:String) => str.length}
spark.udf.register("len",len)
val ds =spark.read.json("file:///opt/meitu/bigdata/src/main/data/employees.json")
ds.createOrReplaceTempView("employees")
ds.show()
spark.sql("select len(name) from employees").show()

2. UserDefinedAggregateFunction

定义一个UDAF


import org.apache.spark.sql.{Row, SparkSession}
import org.apache.spark.sql.expressions.MutableAggregationBuffer
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction
import org.apache.spark.sql.types._

object MyAverageUDAF extends UserDefinedAggregateFunction {
 //Data types of input arguments of this aggregate function
 definputSchema:StructType = StructType(StructField("inputColumn", LongType) :: Nil)
 //Data types of values in the aggregation buffer
 defbufferSchema:StructType = {
   StructType(StructField("sum", LongType):: StructField("count", LongType) :: Nil)
 }
 //The data type of the returned value
 defdataType:DataType = DoubleType
 //Whether this function always returns the same output on the identical input
 defdeterministic: Boolean = true
 //Initializes the given aggregation buffer. The buffer itself is a `Row` that inaddition to
 // standard methods like retrieving avalue at an index (e.g., get(), getBoolean()), provides
 // the opportunity to update itsvalues. Note that arrays and maps inside the buffer are still
 // immutable.
 definitialize(buffer:MutableAggregationBuffer): Unit = {
   buffer(0) = 0L
   buffer(1) = 0L
 }
 //Updates the given aggregation buffer `buffer` with new input data from `input`
 defupdate(buffer:MutableAggregationBuffer, input: Row): Unit ={
   if(!input.isNullAt(0)) {
     buffer(0) = buffer.getLong(0)+ input.getLong(0)
     buffer(1) = buffer.getLong(1)+ 1
   }
 }
 // Mergestwo aggregation buffers and stores the updated buffer values back to `buffer1`
 defmerge(buffer1:MutableAggregationBuffer, buffer2: Row): Unit ={
   buffer1(0) = buffer1.getLong(0)+ buffer2.getLong(0)
   buffer1(1) = buffer1.getLong(1)+ buffer2.getLong(1)
 }
 //Calculates the final result
 defevaluate(buffer:Row): Double =buffer.getLong(0).toDouble /buffer.getLong(1)
}

使用UDAF


val ds = spark.read.json("file:///opt/meitu/bigdata/src/main/data/employees.json")
ds.createOrReplaceTempView("employees")
ds.show()
spark.udf.register("myAverage", MyAverageUDAF)
val result = spark.sql("SELECT myAverage(salary) as average_salary FROM employees")
result.show()

3. Aggregator

定义一个Aggregator


import org.apache.spark.sql.{Encoder, Encoders, SparkSession}
import org.apache.spark.sql.expressions.Aggregator
case class Employee(name: String, salary: Long)
case class Average(var sum: Long, var count: Long)

object MyAverageAggregator extends Aggregator[Employee, Average, Double] {

 // A zero value for this aggregation. Should satisfy the property that any b + zero = b
 def zero: Average = Average(0L, 0L)
 // Combine two values to produce a new value. For performance, the function may modify `buffer`
 // and return it instead of constructing a new object
 def reduce(buffer: Average, employee: Employee): Average = {
   buffer.sum += employee.salary
   buffer.count += 1
   buffer
 }
 // Merge two intermediate values
 def merge(b1: Average, b2: Average): Average = {
   b1.sum += b2.sum
   b1.count += b2.count
   b1
 }
 // Transform the output of the reduction
 def finish(reduction: Average): Double = reduction.sum.toDouble / reduction.count
 // Specifies the Encoder for the intermediate value type
 def bufferEncoder: Encoder[Average] = Encoders.product
 // Specifies the Encoder for the final output value type
 def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}

使用


spark.udf.register("myAverage2", MyAverageAggregator)
import spark.implicits._
val ds = spark.read.json("file:///opt/meitu/bigdata/src/main/data/employees.json").as[Employee]
ds.show()
val averageSalary = MyAverageAggregator.toColumn.name("average_salary")
val result = ds.select(averageSalary)
result.show() 

数据源

  1. 通用的laod/save函数
    可支持多种数据格式:json, parquet, jdbc, orc, libsvm, csv, text

val peopleDF = spark.read.format("json").load("examples/src/main/resources/people.json")
peopleDF.select("name", "age").write.format("parquet").save("namesAndAges.parquet")

默认的是parquet,可以通过spark.sql.sources.default,修改默认配置。

  1. Parquet 文件

val parquetFileDF =spark.read.parquet("people.parquet") 
peopleDF.write.parquet("people.parquet")
  1. ORC 文件

val ds = spark.read.json("file:///opt/meitu/bigdata/src/main/data/employees.json")
ds.write.mode("append").orc("/opt/outputorc/")
spark.read.orc("/opt/outputorc/*").show(1)
  1. JSON

ds.write.mode("overwrite").json("/opt/outputjson/")
spark.read.json("/opt/outputjson/*").show()
  1. Hive 表

spark 1.6及以前的版本使用hive表需要hivecontext。

Spark2开始只需要创建sparksession增加enableHiveSupport()即可。


val spark = SparkSession
.builder()
.config(sparkConf)
.enableHiveSupport()
.getOrCreate()

spark.sql("select count(*) from student").show()
  1. JDBC

写入mysql


wcdf.repartition(1).write.mode("append").option("user", "root")
 .option("password", "mdh2018@#").jdbc("jdbc:mysql://localhost:3306/test","alluxio",new Properties())

从mysql里读


val fromMysql = spark.read.option("user", "root")
 .option("password", "mdh2018@#").jdbc("jdbc:mysql://localhost:3306/test","alluxio",new Properties())
  1. 自定义数据源

自定义source比较简单,首先我们要看看source加载的方式

指定的目录下,定义一个DefaultSource类,在类里面实现自定义source。就可以实现我们的目标。


import org.apache.spark.sql.sources.v2.{DataSourceOptions, DataSourceV2, ReadSupport}

class DefaultSource  extends DataSourceV2 with ReadSupport {

 def createReader(options: DataSourceOptions) = new SimpleDataSourceReader()
}

import org.apache.spark.sql.Row
import org.apache.spark.sql.sources.v2.reader.{DataReaderFactory, DataSourceReader}
import org.apache.spark.sql.types.{StringType, StructField, StructType}

class SimpleDataSourceReader extends DataSourceReader {

 def readSchema() = StructType(Array(StructField("value", StringType)))

 def createDataReaderFactories = {
   val factoryList = new java.util.ArrayList[DataReaderFactory[Row]]
   factoryList.add(new SimpleDataSourceReaderFactory())
   factoryList
 }
}

import org.apache.spark.sql.Row
import org.apache.spark.sql.sources.v2.reader.{DataReader, DataReaderFactory}

class SimpleDataSourceReaderFactory extends
 DataReaderFactory[Row] with DataReader[Row] {
 def createDataReader = new SimpleDataSourceReaderFactory()
 val values = Array("1", "2", "3", "4", "5")

 var index = 0

 def next = index < values.length

 def get = {
   val row = Row(values(index))
   index = index + 1
   row
 }

 def close() = Unit
}

使用


val simpleDf = spark.read
 .format("bigdata.spark.SparkSQL.DataSources")
 .load()

simpleDf.show()

优化器及执行计划

1. 流程简介

整体流程如下:
技术分享图片
总体执行流程如下:从提供的输入API(SQL,Dataset, dataframe)开始,依次经过unresolved逻辑计划,解析的逻辑计划,优化的逻辑计划,物理计划,然后根据cost based优化,选取一条物理计划进行执行.
简单化成四个部分:


1). analysis

Spark 2.0 以后语法树生成使用的是antlr4,之前是scalaparse。

2). logical optimization

常量合并,谓词下推,列裁剪,boolean表达式简化,和其它的规则

3). physical planning

eg:SortExec          

4). Codegen

codegen技术是用scala的字符串插值特性生成源码,然后使用Janino,编译成java字节码。Eg: SortExec

2. 自定义优化器

1). 实现
继承Rule[LogicalPlan]
2). 注册


spark.experimental.extraOptimizations= Seq(MultiplyOptimizationRule)

3). 使用


selectExpr("amountPaid* 1")
  1. 自定义执行计划
    主要是实现重载count函数的功能
    1). 物理计划:
    继承SparkLan实现doExecute方法
    2). 逻辑计划
    继承SparkStrategy实现apply
    3). 注册到Spark执行策略:

spark.experimental.extraStrategies =Seq(countStrategy)

4). 使用


spark.sql("select count(*) fromtest")

Spark SQL从入门到精通

原文:https://blog.51cto.com/15127544/2665112

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!