import torch import numpy as np import torchvision #torch的视觉包 import torchvision.datasets as datasets import torchvision.transforms as transforms from torch.utils.data.dataloader import DataLoader from torchvision.transforms import ToTensor import matplotlib.pyplot as plt import PIL.Image as Image import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.datasets as datasets import torchvision.transforms as transforms class Model(nn.Module): def __init__(self): #初始化 super(Model, self).__init__() #调用父类 self.fc = nn.Linear(4, 3,bias=True) #线性层 def forward(self, x): x = self.fc(x) return x model=Model() in_features=torch.tensor([1,2,3,4],dtype=torch.float32) weight_matrix=torch.tensor([ [1,2,3,4], [2,3,4,5], [3,4,5,6] ],dtype=torch.float32) model.fc.weight=nn.Parameter(weight_matrix) bias_matrix=torch.tensor( [1,2,3] ,dtype=torch.float32) model.fc.bias=nn.Parameter(bias_matrix) #把weight和bias重新赋值 out=model(in_features) print(out) print(model.fc) print(model.fc.weight) print(model.fc.bias) for param in model.parameters(): #输出模型的参数 print(param) for name,param in model.named_parameters(): print(name,‘:‘,param.shape) out=model(in_features).sum() #把结果相加变成标量 print(out) model.fc.weight.grad=torch.zeros(3,4) out.backward() #此时就不会报错了 model.fc.weight.grad in_features=torch.tensor([5,6,7,8],dtype=torch.float32) #利用新的例子进行测试 out=model(in_features).sum() print(out) model.fc.weight.grad=torch.zeros(3,4) out.backward() #此时就不会报错了 model.fc.weight.grad in_features=torch.tensor([1,3,5,2],dtype=torch.float32) #利用新的例子进行测试 out=model(in_features).sum() print(out) model.fc.weight.grad=torch.zeros(3,4) out.backward() #此时就不会报错了 model.fc.weight.grad
import torch import numpy as np import torchvision #torch的视觉包 import torchvision.datasets as datasets import torchvision.transforms as transforms from torch.utils.data.dataloader import DataLoader from torchvision.transforms import ToTensor import matplotlib.pyplot as plt import PIL.Image as Image import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.datasets as datasets import torchvision.transforms as transforms class CModel(nn.Module): def __init__(self): #初始化 super(CModel, self).__init__() #调用父类 self.fc = nn.Linear(28*28, 10) #线性层 def forward(self, x): x = self.fc(x) x=F.softmax(x,dim=1) return x model=CModel() print(model) root=‘D:\Project_Encyclopedia‘ mnist=torchvision.datasets.MNIST(root,train=True,transform=ToTensor(),target_transform=None,download=False) bs=8 mnist_loader=torch.utils.data.DataLoader(dataset=mnist,batch_size=bs,shuffle=True) batch=next(iter(mnist_loader)) image,labels=batch grid=torchvision.utils.make_grid(batch[0],nrow=8)#创建一个网络 plt.figure(figsize=(15,15)) plt.imshow(np.transpose(grid,(1,2,0))) print("labels",batch[1]) model.fc.weight=nn.Parameter(torch.rand(10,784)) input=image.reshape(bs,-1) #转为8×784 这样就可以8×784 与784×10 input.shape out=model(input) print(out) loss=F.cross_entropy(out,label) #交叉熵处理 print(loss) loss.backward() print(model.fc.weight.shape) print(model.fc.weight.grad.shape) updataweight=model.fc.weight-model.fc.weight.grad #权重系数-梯度 model.fc.weight=nn.Parameter(updataweight) out=model(input) model.fc.weight.grad=torch.zeros(10,28*28) loss=F.cross_entropy(out,label) #交叉熵处理 print(loss) loss.backward() updataweight=model.fc.weight-model.fc.weight.grad #权重系数-梯度 model.fc.weight=nn.Parameter(updataweight) out=model(input) model.fc.weight.grad=torch.zeros(10,28*28) loss=F.cross_entropy(out,label) #交叉熵处理 print(loss)
原文:https://www.cnblogs.com/jgg54335/p/14585500.html