首页 > Web开发 > 详细

Deep Networks with Stochastic Depth

时间:2021-03-30 22:10:45      阅读:30      评论:0      收藏:0      [点我收藏+]

https://arxiv.org/abs/1603.09382

---------------------------------------------------------------------------------

2021-03-30

随机深度:训练时每个batch随机dropout一些层,测试时用完整的网络

深层网路:后向传播梯度消失/爆炸,前向传播信息丢失,训练时间长

class StochasticDepthBottlencek(nn.Module):
    expansion=4

    def __init__(self,prob,inchannel,planes,stride=1,downsample=None):
        super(StochasticDepthBottlencek, self).__init__()
        self.conv1=nn.Conv2d(inchannel,planes,1,bias=False)
        self.bn1=nn.BatchNorm2d(planes)
        self.conv2=nn.Conv2d(planes,planes,3,stride,1,bias=False)
        self.bn2=nn.BatchNorm2d(planes)
        self.conv3=nn.Conv2d(planes,planes*self.expansion,1,bias=False)
        self.bn3=nn.BatchNorm2d(planes*self.expansion)
        self.relu=nn.ReLU(inplace=True)
        self.downsample=downsample
        self.stride=stride
        self.prob=prob
        self.m=torch.distributions.bernoulli.Bernoulli(torch.Tensor([self.prob]))

    def forward(self,x):
        identity=x.clone()

        if self.training:
            if torch.equal(self.m.sample(),torch.ones(1)):
                self.conv1.weight.requires_grad=True
                self.conv2.weight.requires_grad=True
                self.conv3.weight.requires_grad=True

                conv1=self.relu(self.bn1(self.conv1(x)))
                conv2=self.relu(self.bn2(self.conv2(conv1)))
                conv3=self.bn3(self.conv3(conv2))

                if self.downsample is not None:
                    identity=self.downsample(identity)

                conv3+=identity
            else:
                self.conv1.weight.requires_grad=False
                self.conv2.weight.requires_grad=False
                self.conv3.weight.requires_grad=False

                if self.downsample is not None:
                    identity=self.downsample(identity)

                conv3=identity
        else:
            conv1=self.relu(self.bn1(self.conv1(x)))
            conv2=self.relu(self.bn2(self.conv2(conv1)))
            conv3=self.bn3(self.conv3(conv2))

            if self.downsample is not None:
                identity=self.downsample(identity)

            conv3+=identity

        return self.relu(conv3)


class StochasticDepthResNet(nn.Module):
    def __init__(self,probs=[1,0.5],layers=[3,4,6,3],classes=1000):
        super(StochasticDepthResNet, self).__init__()
        self.inplanes=64
        self.conv1=nn.Conv2d(3,64,7,2,3,bias=False)
        self.bn1=nn.BatchNorm2d(64)
        self.relu=nn.ReLU(inplace=True)
        self.maxpool=nn.MaxPool2d(kernel_size=3,stride=2,padding=1)

        self.prob=probs[0]
        self.prob_step=(probs[0]-probs[1])/(sum(layers)-1)

        self.layer1=self.make_layer(StochasticDepthBottlencek,64,layers[0],1)
        self.layer2=self.make_layer(StochasticDepthBottlencek,128,layers[1],2)
        self.layer3=self.make_layer(StochasticDepthBottlencek,256,layers[2],2)
        self.layer4=self.make_layer(StochasticDepthBottlencek,512,layers[3],2)

        self.avgpool=nn.AdaptiveAvgPool2d((1,1))
        self.fc=nn.Linear(512*StochasticDepthBottlencek.expansion,classes)

        for m in self.modules():
            if isinstance(m,nn.Conv2d):
                nn.init.kaiming_normal_(m.weight,mode="fan_out",nonlinearity="relu")
            elif isinstance(m,nn.BatchNorm2d):
                nn.init.constant_(m.weight,1)
                nn.init.constant_(m.bias,0)

        for m in self.modules():
            if isinstance(m,StochasticDepthBottlencek):
                nn.init.constant_(m.bn3.weight,0)

    def make_layer(self,block,planes,num,stride=1):
        downsample=None
        if stride!=1 or self.inplanes!=planes*block.expansion:
            downsample=nn.Sequential(
                nn.Conv2d(self.inplanes,planes*block.expansion,1,stride,bias=False),
                nn.BatchNorm2d(planes*block.expansion)
            )

        layers=[]
        layers.append(block(self.prob,self.inplanes,planes,stride,downsample))
        self.inplanes=planes*block.expansion
        self.prob=self.prob-self.prob_step
        for _ in range(1,num):
            layers.append(block(self.prob,self.inplanes,planes,1,None))
            self.prob=self.prob-self.prob_step

        return nn.Sequential(*layers)

    def forward(self,x):
        conv1=self.maxpool(self.relu(self.bn1(self.conv1(x))))

        layer1=self.layer1(conv1)
        layer2=self.layer2(layer1)
        layer3=self.layer3(layer2)
        layer4=self.layer4(layer3)

        avg=self.avgpool(layer4)
        fc=self.fc(avg.view(avg.size(0),-1))

        return fc

 

Deep Networks with Stochastic Depth

原文:https://www.cnblogs.com/shuimobanchengyan/p/14598396.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!