识别垃圾
引用计数法:
可达性算法
现代虚拟机基本都是采用这种算法来判断对象是否存活,可达性算法的原理是以一系列叫做 GC Root 的对象为起点出发,引出它们指向的下一个节点,再以下个节点为起点,引出此节点指向的下一个结点。。。(这样通过 GC Root 串成的一条线就叫引用链),直到所有的结点都遍历完毕,如果相关对象不在任意一个以 GC Root 为起点的引用链中,则这些对象会被判断为「垃圾」,会被 GC 回收。
Object的 finalize 方法给了对象一次垂死挣扎的机会,当对象不可达(可回收)时,当发生GC时,会先判断对象是否执行了 finalize 方法,如果未执行,则会先执行 finalize 方法,我们可以在此方法里将当前对象与 GC Roots 关联,这样执行 finalize 方法之后,GC 会再次判断对象是否可达,如果不可达,则会被回收,如果可达,则不回收!
注意: finalize 方法只会被执行一次,如果第一次执行 finalize 方法此对象变成了可达确实不会回收,但如果对象再次被 GC,则会忽略 finalize 方法,对象会被回收!这一点切记!
那么这些 GC Roots 到底是什么东西呢,哪些对象可以作为 GC Root 呢,有以下几类
虚拟机栈(栈帧中的本地变量表)中引用的对象
// a 是栈帧中的本地变量,当 a = null 时,由于此时 a 充当了 GC Root 的作用,a 与原来指向的实例 new Test() 断开了连接,所以对象会被回收。
Test a = new Test();
a = null;
方法区中类静态属性引用的对象:如:static Test s;
方法区中常量引用的对象:static final Test s = new Test();
本地方法栈中 JNI(即一般说的 Native 方法)引用的对象
垃圾回收主要方法:标记清除算法、复制算法、标记整理算法
标记清除算法
复制算法
标记整理法
分代收集算法
分代收集算法工作原理
新生代Minor GC
老年代
空间分配担保
Stop The World
如果老年代满了,会触发 Full GC, Full GC 会同时回收新生代和老年代(即对整个堆进行GC),它会导致 Stop The World(简称 STW),造成挺大的性能开销。
什么是 STW ?所谓的 STW, 即在 GC(minor GC 或 Full GC)期间,只有垃圾回收器线程在工作,其他工作线程则被挂起。
Minor GC 用的是复制算法,而在老生代由于对象比较多,占用的空间较大,使用复制算法会有较大开销(复制算法在对象存活率较高时要进行多次复制操作,同时浪费一半空间)所以根据老生代特点,在老年代进行的 GC 一般采用的是标记整理法来进行回收。
在新生代工作的垃圾回收器:Serial, ParNew, ParallelScavenge
在老年代工作的垃圾回收器:CMS,Serial Old, Parallel Old
同时在新老生代工作的垃圾回收器:G1
Serial
ParNew 收集器
ParNew 收集器是 Serial 收集器的多线程版本,除了使用多线程,其他像收集算法, STW,对象分配规则,回收策略与 Serial 收集器完成一样,在底层上,这两种收集器也共用了相当多的代码
ParNew 主要工作在 Server 模式,我们知道服务端如果接收的请求多了,响应时间就很重要了,多线程可以让垃圾回收得更快,也就是减少了 STW 时间,能提升响应时间,所以是许多运行在 Server 模式下的虚拟机的首选新生代收集器,
另一个与性能无关的原因是因为除了 Serial 收集器,只有它能与 CMS 收集器配合工作,CMS 是一个划时代的垃圾收集器,是真正意义上的并发收集器,它第一次实现了垃圾收集线程与用户线程(基本上)同时工作,它采用的是传统的 GC 收集器代码框架,与 Serial,ParNew 共用一套代码框架,所以能与这两者一起配合工作,而后文提到的 Parallel Scavenge 与 G1 收集器没有使用传统的 GC 收集器代码框架,而是另起炉灶独立实现的,另外一些收集器则只是共用了部分的框架代码,所以无法与 CMS 收集器一起配合工作。
在多 CPU 的情况下,由于 ParNew 的多线程回收特性,毫无疑问垃圾收集会更快,也能有效地减少 STW 的时间,提升应用的响应速度。
Parallel Scavenge 收集器
Parallel Scavenge 收集器也是一个使用复制算法,多线程,工作于新生代的垃圾收集器
关注点不同,CMS 等垃圾收集器关注的是尽可能缩短垃圾收集时用户线程的停顿时间,而 Parallel Scavenge 目标是达到一个可控制的吞吐量(吞吐量 = 运行用户代码时间 / (运行用户代码时间+垃圾收集时间)),也就是说 CMS 等垃圾收集器更适合用到与用户交互的程序,因为停顿时间越短,用户体验越好,
而 Parallel Scavenge 收集器关注的是吞吐量,所以更适合做后台运算等不需要太多用户交互的任务。
Parallel Scavenge 收集器提供了两个参数来精确控制吞吐量,分别是控制最大垃圾收集时间的 -XX:MaxGCPauseMillis 参数及直接设置吞吐量大小的 -XX:GCTimeRatio(默认99%)
除了以上两个参数,还可以用 Parallel Scavenge 收集器提供的第三个参数 -XX:UseAdaptiveSizePolicy,开启这个参数后,就不需要手工指定新生代大小,Eden 与 Survivor 比例(SurvivorRatio)等细节,只需要设置好基本的堆大小(-Xmx 设置最大堆),以及最大垃圾收集时间与吞吐量大小,虚拟机就会根据当前系统运行情况收集监控信息,动态调整这些参数以尽可能地达到我们设定的最大垃圾收集时间或吞吐量大小这两个指标。自适应策略也是 Parallel Scavenge 与 ParNew 的重要区别!
Serial Old 收集器
Parallel Old 收集器
CMS
CMS 收集器是以实现最短 STW 时间为目标的收集器,如果应用很重视服务的响应速度,希望给用户最好的体验,则 CMS 收集器是个很不错的选择!
我们之前说老年代主要用标记整理法,而 CMS 虽然工作于老年代,但采用的是标记清除法,主要有以下四个步骤
初始标记、并发标记、重新标记、并发清除
从图中可以的看到初始标记和重新标记两个阶段会发生 STW,造成用户线程挂起,不过初始标记仅标记 GC Roots 能关联的对象,速度很快,并发标记是进行 GC Roots Tracing 的过程,重新标记是为了修正并发标记期间因用户线程继续运行而导致标记产生变动的那一部分对象的标记记录,这一阶段停顿时间一般比初始标记阶段稍长,但远比并发标记时间短。
整个过程中耗时最长的是并发标记和标记清理,不过这两个阶段用户线程都可工作,所以不影响应用的正常使用,所以总体上看,可以认为 CMS 收集器的内存回收过程是与用户线程一起并发执行的。
但是 CMS 收集器远达不到完美的程度,主要有以下三个缺点
G1
G1 收集器是面向服务端的垃圾收集器,被称为驾驭一切的垃圾回收器,主要有以下几个特点
与 CMS 相比,它在以下两个方面表现更出色
为什么G1能建立可预测的停顿模型呢,主要原因在于 G1 对堆空间的分配与传统的垃圾收集器不一样,传统的内存分配就像我们前文所述,是连续的,分成新生代,老年代,新生代又分 Eden,S0,S1,而 G1 各代的存储地址不是连续的,每一代都使用了 n 个不连续的大小相同的 Region,每个Region占有一块连续的虚拟内存地址,如图示
除了和传统的新老生代,幸存区的空间区别,Region还多了一个H,它代表Humongous,这表示这些Region存储的是巨大对象(humongous object,H-obj),即大小大于等于region一半的对象,这样超大对象就直接分配到了老年代,防止了反复拷贝移动。
传统的收集器如果发生 Full GC 是对整个堆进行全区域的垃圾收集,而分配成各个 Region 的话,方便 G1 跟踪各个 Region 里垃圾堆积的价值大小(回收所获得的空间大小及回收所需经验值),这样根据价值大小维护一个优先列表,根据允许的收集时间,优先收集回收价值最大的 Region, 也就避免了整个老年代的回收,也就减少了 STW 造成的停顿时间。同时由于只收集部分 Region,可就做到了 STW 时间的可控。
G1 收集器的工作步骤如下:初始标记、并发标记、最终标记、筛选回收。可以看到整体过程与 CMS 收集器非常类似,筛选阶段会根据各个 Region 的回收价值和成本进行排序,根据用户期望的 GC 停顿时间来制定回收计划。
如果是运行在桌面环境处于 Client 模式的,则用 Serial + Serial Old 收集器绰绰有余,如果需要响应时间快,用户体验好的,则用 ParNew + CMS 的搭配模式,即使是号称是「驾驭一切」的 G1,也需要根据吞吐量等要求适当调整相应的 JVM 参数
cpu100%:一般都因为死循环
jstack -l 2609 > ./2609.stack
导出进程快照cat 2609.stack |grep ‘b26‘ -C 8
用grep查看线程文件,定位死循环的哪个类、哪一行内存溢出OOM排查,内存溢出是发生在堆中的,超时,不进行服务,服务挂掉,接口不在服务这样的异常问题会导致内存溢出
堆内存调优
Runtime.getRuntime().totalMemory;
// 获取最大堆内存, Runtime.getRuntime()为Runtime Data Area对象策略 1:将新对象预留在新生代,由于 Full GC 的成本远高于 Minor GC,因此尽可能将对象分配在新生代是明智的做法,实际项目中根据 GC 日志分析新生代空间大小分配是否合理,适当通过“-Xmn”命令调节新生代大小,最大限度降低新对象直接进入老年代的情况。
策略 2:大对象进入老年代,虽然大部分情况下,将对象分配在新生代是合理的。但是对于大对象这种做法却值得商榷,大对象如果首次在新生代分配可能会出现空间不足导致很多年龄不够的小对象被分配的老年代,破坏新生代的对象结构,可能会出现频繁的 full gc。因此,对于大对象,可以设置直接进入老年代(当然短命的大对象对于垃圾回收来说简直就是噩梦)。-XX:PretenureSizeThreshold
可以设置直接进入老年代的对象大小。
策略 3:合理设置进入老年代对象的年龄,-XX:MaxTenuringThreshold
设置对象进入老年代的年龄大小,减少老年代的内存占用,降低 full gc 发生的频率。
策略 4:设置稳定的堆大小,堆大小设置有两个参数:-Xms
初始化堆大小,-Xmx
最大堆大小。
策略5:注意: 如果满足下面的指标,则一般不需要进行 GC 优化:
MinorGC 执行时间不到50ms; Minor GC 执行不频繁,约10秒一次; Full GC 执行时间不到1s; Full GC 执行频率不算频繁,不低于10分钟1次。
原文:https://www.cnblogs.com/JayV/p/14605667.html