Description
Link.
求 \(\sum_{i=1}^{n}\text{fibonacci}_{i}\times i^{k}=\sum_{i=1}^{n}(F_{i-1}+\text{fibonacci}_{i-2})\times i^{k}\),\(1\le n\le10^{17},1\le k\le40\)。
Solution
简记 \(F_{i}=\text{fibonacci}_{i}\)。首先我们作个差:
\[ans_{n}=\sum_{i=1}^{n}F_{i}\times i^{k}=\sum_{i=1}^{n}(F_{i-1}+F_{i-2})\times i^{k} \ans_{n}-ans_{n-1}=F_{n}\times n^{k} \\]
然后:
\[\begin{aligned}
ans_{n}&=ans_{n-1}+F_{n}\times n^{k} \&=ans_{n-1}+F_{n-1}\times(n-1+1)^{k}+F_{n-2}\times(n-2+2)^{k} \&=ans_{n-1}+\left(\sum_{i=0}^{k}A_{i-1}(i)\times\binom{k}{i}\right)+\left(\sum_{i=0}^{k}A_{i-2}(i)\times\binom{k}{i}\times2^{k-i} \right)
\end{aligned}
\]
后面的 dirty work 实在不想做,口胡选手选择放弃。
Oops, something went wrong.
Solution -「CF 392C」Yet Another Number Sequence
原文:https://www.cnblogs.com/orchid-any/p/14615111.html