首页 > 编程语言 > 详细

启发式算法

时间:2021-04-12 18:00:51      阅读:22      评论:0      收藏:0      [点我收藏+]

通俗的解释就是利用类似仿生学的原理,将自然、动物中的一些现象抽象成为算法处理相应问题。当一个问题是NP难问题时,是无法求解到最优解的,因此,用一种相对好的求解算法,去尽可能逼近最优解,得到一个相对优解,在很多实际情况中也是可以接受的

重点:

  1. 用于解决NP-Hard问题;
  2. 得到的是一个相对优解,不是最优解;

补充:

NP问题(Non-deterministic Polynomial ):多项式复杂程度的非确定性问题,这些问题无法根据公式直接地计算出来。比如,找大质数的问题(有没有一个公式,你一套公式,就可以一步步推算出来,下一个质数应该是多少呢?这样的公式是没有的);再比如,大的合数分解质因数的问题(有没有一个公式,把合数代进去,就直接可以算出,它的因子各自是多少?也没有这样的公式)。

NPC问题(Non-deterministic Polynomial complete):NP完全问题,可以这么认为,这种问题只有把解域里面的所有可能都穷举了之后才能得出答案,这样的问题是NP里面最难,但是这样算法的复杂程度,是指数关系。一般说来,如果要证明一个问题是NPC问题的话,可以拿已经是NPC问题的一个问题经过多项式时间的变化变成所需要证明的问题,那么所要证明的问题就是一个NPC问题了。NPC问题是一个问题族,如果里面任意一个问题有了多项式的解,即找到一个算法,那么所有的问题都可以有多项式的解。

启发式算法

原文:https://www.cnblogs.com/yuboyuan/p/14648905.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!