此前做过思路类似的,很明显的Kruskal,将一个森林逐渐并成一颗树
又是一个玄学问题,当时写读取顺手写了一个对于多组输入或是单组输入都适用的while写法,不过反而WA了,以后还是具体问题具体分析吧
#include <iostream>
#include <algorithm>
#include <queue>
#include <string>
#include <vector>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <stack>
#include <map>
#include <set>
using namespace std;
const int maxn= 755;
const double INF= 1e9;
struct Edge
{
int u, v;
double c;
Edge(int _u= 0, int _v= 0, double _c= 0) : u(_u), v(_v), c(_c) {}
bool operator < (const Edge &rhs) const
{
return c< rhs.c;
}
}G[maxn*maxn];
int x[maxn], y[maxn];
int fa[maxn], rk[maxn];
int pre[maxn];
double co[maxn];
vector<pair<int, int>> plan;
int Find(int x)
{
if (x== fa[x]){
return x;
}
return fa[x]= Find(fa[x]);
}
void Union(int x, int y)
{
x= Find(x);
y= Find(y);
if (x== y){
return;
}
if (rk[x]> rk[y]){
fa[y]= x;
rk[x]+= rk[y];
}
else{
fa[x]= y;
rk[y]+= rk[x];
}
}
inline double Dist(int i, int j)
{
return i== j ? 0 : sqrt(double((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])));
}
double Kruskal(const int n, const int m, int cnt)
{
sort(G, G+m);
double ans= 0, minc;
int pi;
for (int i= 0; i< m; ++i){
int u= G[i].u, v= G[i].v;
int f_u= Find(u), f_v= Find(v);
if (f_u== f_v){
continue;
}
ans+= G[i].c;
Union(u, v);
plan.push_back(pair<int, int>(u, v));
if (1== --cnt){
break;
}
}
return 1== cnt ? ans : -1;
}
int main(int argc, char const *argv[])
{
int n, m;
int u, v;
int cnt;
scanf("%d", &n);
plan.clear();
cnt= n;
for (int i= 1; i<= n; ++i){
scanf("%d %d", x+i, y+i);
fa[i]= i;
rk[i]= 1;
}
scanf("%d", &m);
for (int i= 0; i< m; ++i){
scanf("%d %d", &u, &v);
int fa_u= Find(u), fa_v= Find(v);
if (fa_u== fa_v){
continue;
}
else{
--cnt;
Union(fa_u, fa_v);
}
}
m= 0;
for (int i= 1; i<= n; ++i){
for (int j= i+1; j<= n; ++j){
if (Find(i)== Find(j)){
continue;
}
G[m++]= Edge(i, j, Dist(i, j));
}
}
Kruskal(n, m, cnt);
for (int i= 0; i< plan.size(); ++i){
printf("%d %d\n", plan[i].first, plan[i].second);
}
return 0;
}
原文:https://www.cnblogs.com/Idi0t-N3/p/14657296.html