首页 > 其他 > 详细

「SOL」E-Lite (Ural Championship 2013)

时间:2021-04-21 16:21:01      阅读:35      评论:0      收藏:0      [点我收藏+]

为什么这数据能水到可以枚举角度 ac 啊


# 题面

给你 \(n\) 个平面向量 \((x_i,y_i)\),对于每个 \(k=1\sim n\),求「从给出的 \(n\) 个向量中不重复地选择 \(k\) 个,\(k\) 个向量的和的模长最大是多少」。

数据规模:\(n\le1000\)


# 解析

这种「选择 \(k\) 个」的题目,我们之前往往会从 DP 考虑,或者贪心求解。但是我们发现向量并不满足局部最优就是全局最优。

于是这道题我们换一个思路,不从选的过程考虑,而从选的结果 —— 也就是答案的角度考虑。

如果我们知道了答案为 \(\mathbf{v}\),那么一定是由在 \(\mathbf{v}\) 方向上投影最大的 \(k\) 个向量组成的。于是我们可以尝试「旋转」答案向量的方向,然后贪心地选取向量。

虽然数据水,离散地枚举答案向量角度可以 ac,但是角度毕竟是连续的,这种做法不是很靠谱(但是很难卡掉)。

连续的枚举一般考虑枚举临界点。不妨设我们逆时针旋转答案向量 \(\mathbf{v}\),记 id[i] 表示当前在 \(\mathbf{v}\) 方向上投影从大到小第 \(i\) 个向量是哪一个,同理定义 rnk[i] 表示 \(i\) 向量的排名(rnk[id[i]] = i)。

我们发现只有 id 发生变化 —— 也即两个向量的相对投影大小改变时,答案才会改变。设 \(\mathbf{u,v}\) 为两个方向不同的向量:

技术分享图片

于是一对向量会产生两个临界点,总共会有 \(\mathcal{O}(n^2)\) 个临界。将它们极角排序过后逆时针扫一遍。

每经过一个临界点,就会有 rank 相邻的两个向量的 rank 发生交换(记为 rnk, rnk + 1)。扫描时,维护当前 rank,当 rnk, rnk + 1 交换时,只会改变前 rnk 个和前 rnk + 1 个向量的和,\(\mathcal{O}(1)\) 更新答案即可。

唯一的麻烦点是给出的 \(n\) 个向量可能重叠……我的处理是把重叠的向量看成一个,记录一下个数。只能自己意会一下或者看一看代码了。


# 源代码

/*Lucky_Glass*/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>
#include <algorithm>
using namespace std;

typedef long double ldouble;
const int N = 1005;
const ldouble EPS = 1e-12;
#define con(typ) const typ &
#define sec second
#define fir first

template<class typ> typ iAbs(con(typ) key) {return key < 0 ? -key : key;}
template<class typ> int sgn(con(typ) key) {
	if ( iAbs(key) <= EPS ) return 0;
	return key < 0 ? -1 : 1;
}

struct Vector {
	ldouble x, y;
	Vector() {}
	Vector(con(ldouble) _x, con(ldouble) _y) : x(_x), y(_y) {}
	ldouble len() const {return x * x + y * y;}
	Vector operator - (con(Vector) p) const {
		return Vector(x - p.x, y - p.y);
	}
	Vector operator + (con(Vector) p) const {
		return Vector(x + p.x, y + p.y);
	}
	friend ldouble dot(con(Vector) p, con(Vector) q) {
		return p.x * q.x + p.y * q.y;
	}
	Vector operator -() const {return Vector(-x, -y);}
	bool operator != (con(Vector) p) const {
		return sgn(x - p.x) || sgn(y - p.y);
	}
	bool operator < (con(Vector) p) const {
		if ( sgn(x - p.x) ) return sgn(x - p.x) < 0;
		return sgn(y - p.y) < 0;
	}
	Vector cwise90() const {return Vector(y, -x);}
} sum[N];

struct Data {
	Vector v; int cnt;
	Data() {}
	Data(con(Vector) _v, con(int) _c) : v(_v), cnt(_c) {}
} dat[N];

int nn, n, ndv;
pair<int, int> inp[N];
int cnt[N], rnk[N];
ldouble ans[N];

struct Divi {
	int a, b;
	ldouble ang;
	Divi() {}
	Divi(con(int) _a, con(int) _b, con(ldouble) _ang)
	: a(_a), b(_b), ang(_ang) {}
	bool operator == (con(Divi) p) const {return !sgn(ang - p.ang);}
	static bool cmpAng(con(Divi) p, con(Divi) q) {return sgn(p.ang - q.ang) < 0;}
	static bool cmpID(con(Divi) p, con(Divi) q) {
		if ( rnk[p.a] != rnk[q.a] ) return rnk[p.a] < rnk[q.a];
		return rnk[p.b] < rnk[q.b];
	}
} dv[N * N];

void init() {
	sum[0] = Vector(0, 0);
	for (int i = 1, tmp = 0; i <= n; i++) {
		for (int j = 1; j <= dat[i].cnt; j++) {
			tmp++;
			sum[tmp] = sum[tmp - 1] + dat[i].v;
			ans[tmp] = sum[tmp].len();
		}
		rnk[i] = i, cnt[i] = tmp;
	}
}
// q is better than p then
void done(con(int) p, con(int) q) {
	// assert( rnk[p] == rnk[q] - 1 );
	int tmp = cnt[rnk[p] - 1];
	for (int i = 1; i <= dat[q].cnt; i++) {
		tmp++;
		sum[tmp] = sum[tmp - 1] + dat[q].v;
		ans[tmp] = max(ans[tmp], sum[tmp].len());
	}
	cnt[rnk[p]] = tmp;
	for (int i = 1; i <= dat[p].cnt; i++) {
		tmp++;
		sum[tmp] = sum[tmp - 1] + dat[p].v;
		ans[tmp] = max(ans[tmp], sum[tmp].len());
	}
	swap(rnk[p], rnk[q]);
}
int main() {
	scanf("%d", &nn);
	for (int i = 1; i <= nn; i++)
		scanf("%d%d", &inp[i].fir, &inp[i].sec);
	sort(inp + 1, inp + 1 + nn);
	for (int i = 1; i <= nn;) {
		int j = i;
		while ( j <= nn && inp[i] == inp[j] ) j++;
		dat[++n] = Data(Vector(inp[i].fir, inp[i].sec), j - i);
		inp[n] = inp[i];
		i = j;
	}
	for (int i = 1; i <= n; i++)
		for (int j = i + 1; j <= n; j++) {
			double k1 = atan2(inp[j].fir - inp[i].fir, inp[i].sec - inp[j].sec),
				   k2 = atan2(inp[i].fir - inp[j].fir, inp[j].sec - inp[i].sec);
			dv[++ndv] = Divi(j, i, k1);
			dv[++ndv] = Divi(i, j, k2);
		}
	sort(dv + 1, dv + 1 + ndv, Divi::cmpAng);
	init();
	for (int i = 1; i <= ndv; ) {
		int j = i;
		while ( j <= ndv && dv[i] == dv[j] ) j++;
		sort(dv + i, dv + j, Divi::cmpID);
		while ( i < j ) {
			done(dv[i].a, dv[i].b);
			i++;
		}
	}
	for (int i = 1; i <= nn; i++)
		printf("%.8f\n", (double)sqrt(ans[i]));
	return 0;
}

THE END

Thanks for reading!

日月出矣 爝火不息
时雨降矣 井水犹汲
有情有信 无为无形
逍遥平生意

——《从前有个衔玉教》By 星葵/鲜洋芋/溱绫西陌

> Link 【0412乐正绫诞生祭】从前有个衔玉教-Bilibili

「SOL」E-Lite (Ural Championship 2013)

原文:https://www.cnblogs.com/LuckyGlass-blog/p/14683705.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!