首页 > 编程语言 > 详细

python统计分析-双样本T检验

时间:2021-04-22 15:21:34      阅读:28      评论:0      收藏:0      [点我收藏+]

 

#!/usr/bin/env python
# -*- coding:utf-8 -*-

# <editable>

def execute():
    # <editable>
    ‘‘‘
    载入模块
    ‘‘‘
    from scipy.stats import ttest_ind, norm
    import pandas as pd
    from sqlalchemy import create_engine
    ‘‘‘
    连接数据库
    ‘‘‘
    engine = create_engine(mysql+pymysql://root:123123qwe@127.0.0.1:3306/analysis)
    ‘‘‘
    选择目标数据
    ‘‘‘
    # 生成数据

    # params = {
    #     "col1": "",
    #     "col2": "",
    # }
    # inputs = {"table": 纯随机性检验}
    # data_sql = select  + params[col1] + , + params[col2] +  from  + inputs[table]
    # data_in = pd.read_sql_query(data_sql, engine)
    # print(data_in)


    col1 = norm.rvs(loc=5, scale=10, size=500)
    col2 = norm.rvs(loc=5, scale=10, size=500)
    ‘‘‘
    双样本t检验
    ‘‘‘
    # col1 = data_in[params[col1]]
    # col2 = data_in[params[col2]]
    # p = ttest_ind(col1, col2)[1]
    p = ttest_ind(col1, col2)[1]
    ‘‘‘
    ttest_ind(equal_var=False)
    
    equal_var : bool, optional
        If True (default), perform a standard independent 2 sample test that assumes equal population variances [R263]. 
        If False, perform Welch’s t-test, which does not assume equal population variance [R264].
    ‘‘‘
    data_out = ‘‘
    if (p < 0.05):
        data_out += 双样本t检验结果
        data_out += 检验结果
        data_out += "p值为:" + str(p) + ",认为两者总体均值不同"
    else:
        data_out += 双样本t检验结果
        data_out += 检验结果
        data_out += "p值为:" + str(p) + ",无充分证据证明两者总体均值不同"

    ‘‘‘
    生成报告
    ‘‘‘
    print(data_out)
# </editable>

if __name__ == __main__:
    execute()

 

python统计分析-双样本T检验

原文:https://www.cnblogs.com/renfanzi/p/14688711.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!