首页 > 其他 > 详细

tensorflow(二十六):Keras计算准确率和损失

时间:2021-04-22 23:49:14      阅读:27      评论:0      收藏:0      [点我收藏+]

一、Keras五大功能

技术分享图片

 

 二、评估指标用法

技术分享图片

 

 

有一个现成的准确度的meter就是 m e t r i c s . A c c u r a c y ( ) metrics.Accuracy()metrics.Accuracy()。
如果只是简单的求一个平均值的话,有一个更加通用的meter就是 m e t r i c s . M e a n ( ) metrics.Mean()metrics.Mean()。

三、步骤

技术分享图片

 

 技术分享图片

 

 四、实战

  • 需要注意的是:这里我们不仅使用了acc_meter方法,我们自己实现了类型acc_meter的方法,怎么实现呢,我们有这样的一个变量叫做total, total_correct。总的样本的数量,和总的正确的数量。
import tensorflow as tf
from tensorflow.keras import datasets, layers, optimizers, Sequential, metrics

def preprocess(x, y):
    x = tf.cast(x, dtype=tf.float32) / 255.
    y = tf.cast(y, dtype=tf.int32)
    return x, y

batchsz = 128
(x, y), (x_val, y_val) = datasets.mnist.load_data()
print(datasets:, x.shape, y.shape, x.min(), x.max())

db = tf.data.Dataset.from_tensor_slices((x, y))
db = db.map(preprocess).shuffle(60000).batch(batchsz).repeat(10)

ds_val = tf.data.Dataset.from_tensor_slices((x_val, y_val))
ds_val = ds_val.map(preprocess).batch(batchsz)

network = Sequential([layers.Dense(256, activation=relu),
                      layers.Dense(128, activation=relu),
                      layers.Dense(64, activation=relu),
                      layers.Dense(32, activation=relu),
                      layers.Dense(10)])
network.build(input_shape=(None, 28 * 28))
network.summary()

optimizer = optimizers.Adam(lr=0.01)


# 第一步: 这里要对loss和accuracy做一个跟踪。所以这里建立了2个metrics
# 一个是accuracy的metrics,一个是求loss均值的metrics.
acc_meter = metrics.Accuracy()
loss_meter = metrics.Mean()

for step, (x, y) in enumerate(db):

    with tf.GradientTape() as tape:
        # [b, 28, 28] => [b, 784]
        x = tf.reshape(x, (-1, 28 * 28))
        # [b, 784] => [b, 10]
        out = network(x)
        # [b] => [b, 10]
        y_onehot = tf.one_hot(y, depth=10)
        # [b]
        loss = tf.reduce_mean(tf.losses.categorical_crossentropy(y_onehot, out, from_logits=True))


        # 第二步: 每次loss计算完之后会更新一次metrics列表,这样loss会非常的准确。
        loss_meter.update_state(loss)

    grads = tape.gradient(loss, network.trainable_variables)
    optimizer.apply_gradients(zip(grads, network.trainable_variables))

    if step % 100 == 0:

        # 第三步: 测试的时候把loss的result打印出来。
        print(step, loss:, loss_meter.result().numpy())

        # 第四步: 把当前的loss buffer缓存清理掉。======这样每隔100次打印出来的loss是前100次的平均loss,而不是第100次了。
        # 数值会看起来非常的稳定。
        loss_meter.reset_states()

    # evaluate 测试的时候。我们来看acc metrics
    if step % 500 == 0:
        total, total_correct = 0., 0

        # 首先: acc_meter缓存清0。
        acc_meter.reset_states()

        for step, (x, y) in enumerate(ds_val):
            # [b, 28, 28] => [b, 784]
            x = tf.reshape(x, (-1, 28 * 28))
            # [b, 784] => [b, 10]
            out = network(x)

            # [b, 10] => [b]
            pred = tf.argmax(out, axis=1)
            pred = tf.cast(pred, dtype=tf.int32)
            # bool type
            correct = tf.equal(pred, y)
            # bool tensor => int tensor => numpy
            total_correct += tf.reduce_sum(tf.cast(correct, dtype=tf.int32)).numpy()
            total += x.shape[0]

            # 然后: acc_meter的值更新缓存到列表。
            acc_meter.update_state(y, pred)

        print(step, Evaluate Acc:, total_correct / total, acc_meter.result().numpy())

 

tensorflow(二十六):Keras计算准确率和损失

原文:https://www.cnblogs.com/zhangxianrong/p/14691288.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!