tag: Spark, Spark Partitioner, Spark Repartition
2021-04-2513:36:44 星期六
version: spark-2.4.5
自定义key分发的逻辑仅在 RDD 级别适用。
Partitioner
自定义分区器
abstract class Partitioner extends Serializable {
abstract def getPartition(key: Any): Int // 返回值类似于数组Index
abstract def numPartitions: Int
}
HashPartitioner
自带Hash分区器, 分区ID: key.hashCode % numPartitions 负数则加Mod否则返回
class HashPartitioner extends Partitioner{ new HashPartitioner(partitions: Int) }
RangePartitioner
相比HashPartitioner,RangePartitioner分区会尽量保证每个分区中数据量的均匀, 要求Key可比较.
将分区数据分成块, 用鱼塘抽样对块计算(主要是为了得到尽量多的值 与其count) 之后就是选分隔符, 就跟HBase的Region的范围似的
class RangePartitioner[K, V] extends Partitioner
coalesce
返回numPartitions个分区的新RDD, 当shuffle = false时, 这是一个 narrow dependency 算子性能较好,
一般用来减少分区数, 比如从 100 -> 10(最好不少于Executor个数)
def coalesce(numPartitions: Int, shuffle: Boolean = false, partitionCoalescer: Option[PartitionCoalescer] = Option.empty)(implicit ord: Ordering[T] = null): RDD[T]
repartition
带有Shuffle的Repartition, 可以任意调节分区数.
/** Return a new RDD that has exactly numPartitions partitions. */
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]
repartitionAndSortWithinPartitions
返回按照Partitioner给出的Key重分区并顺序排序后的RDD, 利用ShuffleSortManager实现, 相比于 repartition + sortByKey 性能更好.
即相当于 sortByKey -> exchange -> merge
/**
* Repartition the RDD according to the given partitioner and, within each resulting
* partition, sort records by their keys.
* This is more efficient than calling repartition and then sorting within each
* partition because it can push the sorting down into the shuffle machinery.
*/
def repartitionAndSortWithinPartitions(partitioner: Partitioner): RDD[(K, V)]
原文:https://www.cnblogs.com/chinashenkai/p/14703219.html