项目打包下载
1 /*
2 * Copyright 1993-2010 NVIDIA Corporation. All rights reserved.
3 *
4 * NVIDIA Corporation and its licensors retain all intellectual property and
5 * proprietary rights in and to this software and related documentation.
6 * Any use, reproduction, disclosure, or distribution of this software
7 * and related documentation without an express license agreement from
8 * NVIDIA Corporation is strictly prohibited.
9 *
10 * Please refer to the applicable NVIDIA end user license agreement (EULA)
11 * associated with this source code for terms and conditions that govern
12 * your use of this NVIDIA software.
13 *
14 */
15
16
17 #include "../common/book.h"
18 #include "cuda.h"
19 #include "cuda_runtime.h"
20 #include "device_launch_parameters.h"
21 #include "device_functions.h"
22 #define imin(a,b) (a<b?a:b)
23
24 const int N = 33 * 1024;
25 const int threadsPerBlock = 256;//每个线程块启动256个线程
26 const int blocksPerGrid = imin(32, (N + threadsPerBlock - 1) / threadsPerBlock);
27
28 /*
29 内核函数
30 */
31 __global__ void dot(float *a, float *b, float *c) {
32 //设备上的共享内存,在每个线程块中都有
33 __shared__ float cache[threadsPerBlock];
34 int tid = threadIdx.x + blockIdx.x * blockDim.x;
35 //线程块中的线程索引赋值给缓冲索引
36 int cacheIndex = threadIdx.x;
37
38 float temp = 0;
39 //当前索引小于总共的数据量时
40 while (tid < N) {
41 temp += a[tid] * b[tid];
42 //步长为活动的线程数
43 tid += blockDim.x * gridDim.x;
44 }//如果再次在这个线程上执行时,temp中存放的是上次计算的值,也就是再次计算的结果是加上上次计算的值
45
46 // set the cache values
47 //将结果存放在共享存储中,每个线程对应一个共享存储
48 cache[cacheIndex] = temp;
49
50 /*
51 synchronize threads in this block
52 同步操作,使得每个线程都计算完毕,再继续后面的操作
53 */
54 __syncthreads();
55
56
57 // for reductions, threadsPerBlock must be a power of 2
58 // because of the following code
59 /*
60 归约操作
61 blockDim.x / 2块中的线程个数除以2,相当于取中间值
62 因为这个blockDim是2的倍数,所以不会有除不尽的情况
63 */
64 int i = blockDim.x / 2;
65 while (i != 0) {
66 if (cacheIndex < i)
67 /*
68 前半部分和后半部分对应的第一个相加,以此类推
69 */
70 cache[cacheIndex] += cache[cacheIndex + i];
71 /*
72 同步使得所有线程完成了第一次归约在进行下一次归约
73 */
74 __syncthreads();
75 //下次归约的中间值
76 i /= 2;
77 }
78 //最终结果存放在cache[0]中,所以将cache[0]赋给以块索引为下标的数组中
79 if (cacheIndex == 0)
80 c[blockIdx.x] = cache[0];
81 }
82
83
84 int main(void) {
85 float *a, *b, c, *partial_c;
86 float *dev_a, *dev_b, *dev_partial_c;
87
88 // allocate memory on the cpu side
89 a = (float*)malloc(N*sizeof(float));
90 b = (float*)malloc(N*sizeof(float));
91 partial_c = (float*)malloc(blocksPerGrid*sizeof(float));
92
93 // allocate the memory on the GPU
94 HANDLE_ERROR(cudaMalloc((void**)&dev_a,
95 N*sizeof(float)));
96 HANDLE_ERROR(cudaMalloc((void**)&dev_b,
97 N*sizeof(float)));
98 HANDLE_ERROR(cudaMalloc((void**)&dev_partial_c,
99 blocksPerGrid*sizeof(float)));
100
101 // fill in the host memory with data
102 for (int i = 0; i<N; i++) {
103 a[i] = i;
104 b[i] = i * 2;
105 }
106
107 // copy the arrays ‘a‘ and ‘b‘ to the GPU
108 HANDLE_ERROR(cudaMemcpy(dev_a, a, N*sizeof(float),
109 cudaMemcpyHostToDevice));
110 HANDLE_ERROR(cudaMemcpy(dev_b, b, N*sizeof(float),
111 cudaMemcpyHostToDevice));
112
113 dot << <blocksPerGrid, threadsPerBlock > >>(dev_a, dev_b, dev_partial_c);
114
115 // copy the array ‘c‘ back from the GPU to the CPU
116 HANDLE_ERROR(cudaMemcpy(partial_c, dev_partial_c,
117 blocksPerGrid*sizeof(float),
118 cudaMemcpyDeviceToHost));
119
120 /* 在主机上完成最后的相加工作
121 这样是为了避免简单的工作在GPU上造成的资源浪费
122 因为好多资源处于空闲状态
123 */
124 c = 0;
125 for (int i = 0; i<blocksPerGrid; i++) {
126 c += partial_c[i];
127 }
128
129 #define sum_squares(x) (x*(x+1)*(2*x+1)/6)
130 printf("Does GPU value %.6g = %.6g?\n", c, 2 * sum_squares((float)(N - 1)));
131
132 // free memory on the gpu side
133 HANDLE_ERROR(cudaFree(dev_a));
134 HANDLE_ERROR(cudaFree(dev_b));
135 HANDLE_ERROR(cudaFree(dev_partial_c));
136
137 // free memory on the cpu side
138 free(a);
139 free(b);
140 free(partial_c);
141 }
原文:http://www.cnblogs.com/liangliangdetianxia/p/3986133.html