常数时间的操作:如果一个操作的执行时间不以具体样本量为转移,每次执行时间都是固定时间。称这样的操作为常数时间的操作。
确定算法流程的总操作数量与样本数量之间的表达式关系
只看表达式最高阶项的部分
?常见的算术运算(+、-、*、/、% 等)
?常见的位运算(>>、>>>、<<、|、&、^等)
?赋值、比较、自增、自减操作等
?数组寻址操作
结论: 执行时间固定的操作都是常数时间的操作。执行时间不固定的操作,都不是常数时间的操作。
1,想象该算法流程所处理的数据状况,要按照最差情况来。
2,把整个流程彻底拆分为一个个基本动作,保证每个动作都是常数时间的操作。
3,如果数据量为N,看看基本动作的数量和N是什么关系。
当完成了表达式的建立,只要把最高阶项留下即可。低阶项都去掉,高阶项的系数也去掉。
记为:O(忽略掉系数的高阶项)
当我们要处理的样本量很大很大时,我们会发现低阶项是什么不是最重要的;每一项的系数是什么,不是最重要的。真正重要的就是最高阶项是什么。
这就是时间复杂度的意义,它是衡量算法流程的复杂程度的一种指标,该指标只与数据量有关,与过程之外的优化无关。
作为输入参数的空间,不算额外空间。
作为输出结果的空间,也不算额外空间。
因为这些都是必要的、和现实目标有关的。所以都不算。
但除此之外,你的流程如果还需要开辟空间才能让你的流程继续下去。这部分空间就是额外空间。
如果你的流程只需要开辟有限几个变量,额外空间复杂度就是O(1)。
我们会发现,时间复杂度这个指标,是忽略低阶项和所有常数系数的。
难道同样时间复杂度的流程,在实际运行时候就一样的好吗?
当然不是。
时间复杂度只是一个很重要的指标而已。如果两个时间复杂度一样的算法,你还要去在时间上拼优劣,就进入到拼常数时间的阶段,简称拼常数项。
算法流程的常数项的比拼方式 :
放弃理论分析,生成随机数据直接测。
为什么不去理论分析?
不是不能纯分析,而是没必要。因为不同常数时间的操作,虽然都是固定时间,但还是有快慢之分的。
比如,位运算的常数时间原小于算术运算的常数时间,这两个运算的常数时间又远小于数组寻址的时间。
所以如果纯理论分析,往往会需要非常多的分析过程。都已经到了具体细节的程度,莫不如交给实验数据好了。
一般情况下,认为解决一个问题的算法流程,在时间复杂度的指标上,一定要尽可能的低,先满足了时间复杂度最低这个指标之后,使用最少的空间的算法流程,叫这个问题的最优解。
一般说起最优解都是忽略掉常数项这个因素的,因为这个因素只决定了实现层次的优化和考虑,而和怎么解决整个问题的思想无关。
原文:https://www.cnblogs.com/xingye1889/p/14729072.html