\(\vert A \vert = \vert B \vert \Leftrightarrow \exists f:A \to B( f \text{ is bijective})\)
note: 等势是一个具有等价性质的概念。
\(X\text{ is finite}\Leftarrow \exists n \in \mathbb{N}.\vert X \vert = \vert n \vert = \vert \{0,1,2,....,n-1\}\vert\)
\(X\text{ is infinite}\Leftarrow \forall n \in \mathbb{N}.\vert X \vert != \vert n \vert\)
\(\mathbb{N}\text{ is infinite}(\text{easily proved by contradiction.})\)
\(\vert \mathbb{N}\vert = \aleph_0\)
\(X \text{ is countably infinite} \Leftrightarrow \vert X \vert = \aleph_0\)
\(X \text{ is countable} \Leftrightarrow X \text{ is finite or countably infinite.}\)
Proved by diagonal argument.
\(\vert A \vert \le \vert B \vert \Leftarrow \exists f:A \to B(f \text{ is injective.})\)
\(X \text{ is countable.} \Leftrightarrow \vert X \vert \le \aleph_0\)
用到的定理:Cantor-Schroder-Bernstein 定理:如果存在\(f:A \to B \text{ and }g:B \to A\),且它们都是单射,那么一定存在 \(h:A \to B\) 是双射。
2种方法:
用到的定理: Cantor 定理:\(\vert A \vert \lt \vert \mathcal{P}(A) \vert\)
\(\vert \mathbb{R} \vert = \vert \mathbb{R}^n \vert = \vert [0,1] \vert = 2^{\aleph_0}\)
\(\vert \mathbb{N}\vert = \vert \mathbb{Z} \vert = \vert \mathbb{Q} \vert = \aleph_0\)
原文:https://www.cnblogs.com/Softwarer1412/p/14730191.html