首页 > 其他 > 详细

pytorch的分布式

时间:2021-05-08 23:12:04      阅读:53      评论:0      收藏:0      [点我收藏+]

学习:https://zhuanlan.zhihu.com/p/136372142

 

DDP:

from __future__ import print_function
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn

import torch.nn.parallel
import torch.distributed as dist
import torch.utils.data
import torch.utils.data.distributed

import random
import os
import sys
import argparse
import numpy as np
from InceptionResNetV2 import *
from swin_transformer import *
from sklearn.mixture import GaussianMixture
import dataloader_aliproduct as dataloader
import torchnet
import time
from apex.parallel import DistributedDataParallel as DDP
from apex.fp16_utils import *
from apex import amp, optimizers
from apex.multi_tensor_apply import multi_tensor_applier
import apex

parser = argparse.ArgumentParser(description=‘PyTorch WebVision Training‘)
parser.add_argument(‘--batch_size‘, default=64, type=int, help=‘train batchsize‘) 
parser.add_argument(‘--lr‘, ‘--learning_rate‘, default=0.01, type=float, help=‘initial learning rate‘)
parser.add_argument(‘--alpha‘, default=0.5, type=float, help=‘parameter for Beta‘)
parser.add_argument(‘--lambda_u‘, default=0, type=float, help=‘weight for unsupervised loss‘)
parser.add_argument(‘--p_threshold‘, default=0.5, type=float, help=‘clean probability threshold‘)
parser.add_argument(‘--T‘, default=0.5, type=float, help=‘sharpening temperature‘)
parser.add_argument(‘--num_epochs‘, default=200, type=int)
parser.add_argument(‘--id‘, default=‘‘,type=str)
parser.add_argument(‘--seed‘, default=123)
parser.add_argument(‘--gpuid‘, default=0, type=int)
parser.add_argument(‘--num_class‘, default=50030, type=int)
parser.add_argument(‘--data_path‘, default=‘./dataset/‘, type=str, help=‘path to dataset‘)
parser.add_argument(‘--opt-level‘, default=‘O1‘, type=str)
parser.add_argument("--local_rank", default=4, type=int)

parser.add_argument(‘--world-size‘, default=2, type=int,
                    help=‘number of nodes for distributed training‘)
# parser.add_argument(‘--rank‘, default=3, type=int,
#                     help=‘node rank for distributed training‘)
parser.add_argument(‘--dist-url‘, default=‘tcp://224.66.41.62:23456‘, type=str,
                    help=‘url used to set up distributed training‘)
parser.add_argument(‘--dist-backend‘, default=‘nccl‘, type=str,
                    help=‘distributed backend‘)
parser.add_argument(‘--gpu‘, default=-1, type=int,
                    help=‘GPU id to use.‘)
parser.add_argument(‘--multiprocessing-distributed‘, action=‘store_true‘,
                    help=‘Use multi-processing distributed training to launch ‘
                         ‘N processes per node, which has N GPUs. This is the ‘
                         ‘fastest way to use PyTorch for either single node or ‘
                         ‘multi node data parallel training‘)


# # cudnn.benchmark = True
# args = parser.parse_args()

# # torch.cuda.set_device(args.gpuid)

# assert torch.backends.cudnn.enabled, "Amp requires cudnn backend to be enabled."

args = parser.parse_args()
random.seed(args.seed)
# torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.gpu is None:
    print("must specify GPU number")
    #return

print("Use GPU: {} for training".format(args.gpu))
torch.cuda.set_device(args.local_rank)

# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
dist.init_process_group(backend=‘nccl‘, init_method=‘env://‘)

print("after dist init")

# Training
def train(epoch,net,net2,optimizer,labeled_trainloader,unlabeled_trainloader):
    net.train()
    net2.eval() #fix one network and train the other
    
    unlabeled_train_iter = iter(unlabeled_trainloader)    
    num_iter = (len(labeled_trainloader.dataset)//args.batch_size)+1
    for batch_idx, (inputs_x, inputs_x2, labels_x, w_x) in enumerate(labeled_trainloader):      
        try:
            inputs_u, inputs_u2 = unlabeled_train_iter.next()
        except:
            unlabeled_train_iter = iter(unlabeled_trainloader)
            inputs_u, inputs_u2 = unlabeled_train_iter.next()                 
        batch_size = inputs_x.size(0)
        
        # Transform label to one-hot
        labels_x = torch.zeros(batch_size, args.num_class).scatter_(1, labels_x.view(-1,1), 1)        
        w_x = w_x.view(-1,1).type(torch.FloatTensor) 

        inputs_x, inputs_x2, labels_x, w_x = inputs_x.cuda(), inputs_x2.cuda(), labels_x.cuda(), w_x.cuda()
        inputs_u, inputs_u2 = inputs_u.cuda(), inputs_u2.cuda()

        with torch.no_grad():
            # label co-guessing of unlabeled samples
            outputs_u11 = net(inputs_u)
            outputs_u12 = net(inputs_u2)
            outputs_u21 = net2(inputs_u)
            outputs_u22 = net2(inputs_u2)            
            
            pu = (torch.softmax(outputs_u11, dim=1) + torch.softmax(outputs_u12, dim=1) + torch.softmax(outputs_u21, dim=1) + torch.softmax(outputs_u22, dim=1)) / 4       
            ptu = pu**(1/args.T) # temparature sharpening
            
            targets_u = ptu / ptu.sum(dim=1, keepdim=True) # normalize
            targets_u = targets_u.detach()       
            
            # label refinement of labeled samples
            outputs_x = net(inputs_x)
            outputs_x2 = net(inputs_x2)            
            
            px = (torch.softmax(outputs_x, dim=1) + torch.softmax(outputs_x2, dim=1)) / 2
            px = w_x*labels_x + (1-w_x)*px              
            ptx = px**(1/args.T) # temparature sharpening 
                       
            targets_x = ptx / ptx.sum(dim=1, keepdim=True) # normalize           
            targets_x = targets_x.detach()       
        
        # mixmatch
        l = np.random.beta(args.alpha, args.alpha)        
        l = max(l, 1-l)
                
        all_inputs = torch.cat([inputs_x, inputs_x2, inputs_u, inputs_u2], dim=0)
        all_targets = torch.cat([targets_x, targets_x, targets_u, targets_u], dim=0)

        idx = torch.randperm(all_inputs.size(0))

        input_a, input_b = all_inputs, all_inputs[idx]
        target_a, target_b = all_targets, all_targets[idx]

        mixed_input = l * input_a[:batch_size*2] + (1 - l) * input_b[:batch_size*2]        
        mixed_target = l * target_a[:batch_size*2] + (1 - l) * target_b[:batch_size*2]
                
        logits = net(mixed_input)
        
        Lx = -torch.mean(torch.sum(F.log_softmax(logits, dim=1) * mixed_target, dim=1))
        
        prior = torch.ones(args.num_class)/args.num_class
        prior = prior.cuda()        
        pred_mean = torch.softmax(logits, dim=1).mean(0)
        penalty = torch.sum(prior*torch.log(prior/pred_mean))
       
        loss = Lx + penalty
        # compute gradient and do SGD step
        optimizer.zero_grad()
        # loss.backward()
        with amp.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()
        optimizer.step()
        if (batch_idx+1)%100 == 1:
            sys.stdout.write(‘\r‘)
            sys.stdout.write(‘%s | Epoch [%3d/%3d] Iter[%4d/%4d]\t Labeled loss: %.2f‘
                    %(args.id, epoch, args.num_epochs, batch_idx+1, num_iter, Lx.item()))
            sys.stdout.flush()

def warmup(epoch,net,optimizer,dataloader):
    start1 = time.time() 
    net.train()
    num_iter = (len(dataloader.dataset)//dataloader.batch_size)+1
    for batch_idx, (inputs, labels, path) in enumerate(dataloader):      
        inputs, labels = inputs.cuda(), labels.cuda() 
        optimizer.zero_grad()
        outputs = net(inputs)               
        loss = CEloss(outputs, labels)   
        
        #penalty = conf_penalty(outputs)
        L = loss #+ penalty      

        # L.backward()  
        with amp.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()
        optimizer.step() 
        if (batch_idx+1)%100 == 1:
            end1 = time.time() 
            sys.stdout.write(‘\r‘)
            sys.stdout.write(‘%s | Epoch [%3d/%3d] Iter[%4d/%4d]\t CE-loss: %.4f\t %.4f\n‘
                    %(args.id, epoch, args.num_epochs, batch_idx+1, num_iter, loss.item(),end1 - start1))
            sys.stdout.flush()
        
        
def test(epoch,net1,net2,test_loader):
    acc_meter.reset()
    net1.eval()
    net2.eval()
    correct = 0
    total = 0
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(test_loader):
            inputs, targets = inputs.cuda(), targets.cuda()
            outputs1 = net1(inputs)
            outputs2 = net2(inputs)           
            outputs = outputs1+outputs2
            _, predicted = torch.max(outputs, 1)                 
            acc_meter.add(outputs,targets)
    accs = acc_meter.value()
    return accs


def eval_train(model,all_loss):    
    model.eval()
    num_iter = (len(eval_loader.dataset)//eval_loader.batch_size)+1
    losses = torch.zeros(len(eval_loader.dataset))    
    with torch.no_grad():
        for batch_idx, (inputs, targets, index) in enumerate(eval_loader):
            inputs, targets = inputs.cuda(), targets.cuda() 
            outputs = model(inputs) 
            loss = CE(outputs, targets)  
            for b in range(inputs.size(0)):
                losses[index[b]]=loss[b]
            if (batch_idx+1)%100 == 1:       
                sys.stdout.write(‘\r‘)
                sys.stdout.write(‘| Evaluating loss Iter[%3d/%3d]\t‘ %(batch_idx,num_iter)) 
                sys.stdout.flush()    
                                    
    losses = (losses-losses.min())/(losses.max()-losses.min())    
    all_loss.append(losses)

    # fit a two-component GMM to the loss
    input_loss = losses.reshape(-1,1)
    gmm = GaussianMixture(n_components=2,max_iter=10,tol=1e-2,reg_covar=5e-4)
    gmm.fit(input_loss)
    prob = gmm.predict_proba(input_loss) 
    prob = prob[:,gmm.means_.argmin()]         
    return prob,all_loss

def linear_rampup(current, warm_up, rampup_length=16):
    current = np.clip((current-warm_up) / rampup_length, 0.0, 1.0)
    return args.lambda_u*float(current)

class SemiLoss(object):
    def __call__(self, outputs_x, targets_x, outputs_u, targets_u, epoch, warm_up):
        probs_u = torch.softmax(outputs_u, dim=1)

        Lx = -torch.mean(torch.sum(F.log_softmax(outputs_x, dim=1) * targets_x, dim=1))
        Lu = torch.mean((probs_u - targets_u)**2)

        return Lx, Lu, linear_rampup(epoch,warm_up)

class NegEntropy(object):
    def __call__(self,outputs):
        probs = torch.softmax(outputs, dim=1)
        return torch.mean(torch.sum(probs.log()*probs, dim=1))

def create_model():
    model = swin_base_patch4_window7_224_in22k()#InceptionResNetV2(num_classes=args.num_class) # #
    model = model.cuda(args.local_rank)
    return model

stats_log=open(‘./checkpoint/%s‘%(args.id)+‘_stats.txt‘,‘w‘) 
test_log=open(‘./checkpoint/%s‘%(args.id)+‘_acc.txt‘,‘w‘)     

warm_up=1

loader = dataloader.webvision_dataloader(batch_size=args.batch_size,num_workers=5,root_dir=args.data_path,log=stats_log, num_class=args.num_class)

print(‘| Building net‘)
net1 = create_model()
net2 = create_model()
cudnn.benchmark = True

criterion = SemiLoss()
optimizer1 = optim.SGD(net1.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
optimizer2 = optim.SGD(net2.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)

net1, optimizer1 = amp.initialize(net1, optimizer1,
                                    opt_level=args.opt_level)
net2, optimizer2 = amp.initialize(net2, optimizer2,
                                    opt_level=args.opt_level
                                    )
net1 = DDP(net1)
net2 = DDP(net2)#, device_ids=[args.local_rank],output_device=args.local_rank, find_unused_parameters=True)
CE = nn.CrossEntropyLoss(reduction=‘none‘)
CEloss = nn.CrossEntropyLoss()
conf_penalty = NegEntropy()
# print("1")
all_loss = [[],[]] # save the history of losses from two networks
acc_meter = torchnet.meter.ClassErrorMeter(topk=[1,5], accuracy=True)

best_acc = [0,0]
for epoch in range(args.num_epochs+1):   
    lr=args.lr
    if epoch >= 40:
        lr /= 10      
    for param_group in optimizer1.param_groups:
        param_group[‘lr‘] = lr       
    for param_group in optimizer2.param_groups:
        param_group[‘lr‘] = lr              
    eval_loader = loader.run(‘eval_train‘)  
    web_valloader = loader.run(‘test‘)
    # imagenet_valloader = loader.run(‘imagenet‘)   
    
    if epoch<warm_up:       
        warmup_trainloader = loader.run(‘warmup‘)
        print(‘Warmup Net1‘)
        warmup(epoch,net1,optimizer1,warmup_trainloader)    
        print(‘\nWarmup Net2‘)
        warmup(epoch,net2,optimizer2,warmup_trainloader) 
   
    else:                
        pred1 = (prob1 > args.p_threshold)      
        pred2 = (prob2 > args.p_threshold)      
        
        print(‘Train Net1‘)
        labeled_trainloader, unlabeled_trainloader = loader.run(‘train‘,pred2,prob2) # co-divide
        train(epoch,net1,net2,optimizer1,labeled_trainloader, unlabeled_trainloader) # train net1  
        
        print(‘\nTrain Net2‘)
        labeled_trainloader, unlabeled_trainloader = loader.run(‘train‘,pred1,prob1) # co-divide
        train(epoch,net2,net1,optimizer2,labeled_trainloader, unlabeled_trainloader) # train net2    

    
    web_acc = test(epoch,net1,net2,web_valloader)  
    k = 0
    if web_acc[k] > best_acc[k]:
        best_acc[k] = web_acc[k]
        print(‘| Saving Best Net%d ...‘%k)
        save_point = ‘./checkpoint/%s_net%d.pth.tar‘%(args.id,k)
        torch.save(net1.state_dict(), save_point)
    k = 1
    if web_acc[k] > best_acc[k]:
        best_acc[k] = web_acc[k]
        print(‘| Saving Best Net%d ...‘%k)
        save_point = ‘./checkpoint/%s_net%d.pth.tar‘%(args.id,k)
        torch.save(net2.state_dict(), save_point)
    # imagenet_acc = test(epoch,net1,net2,imagenet_valloader)  
    
    # print("\n| Test Epoch #%d\t WebVision Acc: %.2f%% (%.2f%%) \t ImageNet Acc: %.2f%% (%.2f%%)\n"%(epoch,web_acc[0],web_acc[1],imagenet_acc[0],imagenet_acc[1]))  
    # test_log.write(‘Epoch:%d \t WebVision Acc: %.2f%% (%.2f%%) \t ImageNet Acc: %.2f%% (%.2f%%)\n‘%(epoch,web_acc[0],web_acc[1],imagenet_acc[0],imagenet_acc[1]))
    # test_log.flush()  
    print("\n| Test Epoch #%d\t WebVision Acc: %.2f%% (%.2f%%) \n"%(epoch,web_acc[0],web_acc[1]))  
    test_log.write(‘Epoch:%d \t WebVision Acc: %.2f%% (%.2f%%) \n‘%(epoch,web_acc[0],web_acc[1]))
    test_log.flush() 
       
    print(‘\n==== net 1 evaluate training data loss ====‘) 
    prob1,all_loss[0]=eval_train(net1,all_loss[0])   
    print(‘\n==== net 2 evaluate training data loss ====‘) 
    prob2,all_loss[1]=eval_train(net2,all_loss[1])
    torch.save(all_loss,‘./checkpoint/%s.pth.tar‘%(args.id))        

  

multiprocessing:

from __future__ import print_function
import sys
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import random
import os
import sys
import argparse
import numpy as np
# from InceptionResNetV2 import *
from swin_transformer import *
from sklearn.mixture import GaussianMixture
# import dataloader_webvision as dataloader
import dataloader_aliproduct as dataloader
import torchnet
import torch.multiprocessing as mp
import time
from apex.parallel import DistributedDataParallel as DDP
from apex.fp16_utils import *
from apex import amp, optimizers
from apex.multi_tensor_apply import multi_tensor_applier
import apex
parser = argparse.ArgumentParser(description=‘PyTorch WebVision Parallel Training‘)
parser.add_argument(‘--batch_size‘, default=96, type=int, help=‘train batchsize‘) 
parser.add_argument(‘--lr‘, ‘--learning_rate‘, default=0.01, type=float, help=‘initial learning rate‘)
parser.add_argument(‘--alpha‘, default=0.5, type=float, help=‘parameter for Beta‘)
parser.add_argument(‘--lambda_u‘, default=0, type=float, help=‘weight for unsupervised loss‘)
parser.add_argument(‘--p_threshold‘, default=0.5, type=float, help=‘clean probability threshold‘)
parser.add_argument(‘--T‘, default=0.5, type=float, help=‘sharpening temperature‘)
parser.add_argument(‘--num_epochs‘, default=100, type=int)
parser.add_argument(‘--id‘, default=‘‘,type=str)
parser.add_argument(‘--seed‘, default=123)
parser.add_argument(‘--gpuid1‘, default=1, type=int)
parser.add_argument(‘--gpuid2‘, default=2, type=int)
parser.add_argument(‘--num_class‘, default=50030, type=int)
parser.add_argument(‘--data_path‘, default=‘./dataset/‘, type=str, help=‘path to dataset‘)
parser.add_argument(‘--opt-level‘, default=‘O2‘, type=str)

args = parser.parse_args()

os.environ["CUDA_VISIBLE_DEVICES"] = ‘%s,%s‘%(args.gpuid1,args.gpuid2)
random.seed(args.seed)
cuda1 = torch.device(‘cuda:0‘)
cuda2 = torch.device(‘cuda:1‘)

# Training
def train(epoch,net,net2,optimizer,labeled_trainloader,unlabeled_trainloader,device,whichnet):
    criterion = SemiLoss()   
    
    net.train()
    net2.eval() #fix one network and train the other
    
    unlabeled_train_iter = iter(unlabeled_trainloader)    
    num_iter = (len(labeled_trainloader.dataset)//args.batch_size)+1
    net, optimizer = amp.initialize(net, optimizer,
                                      opt_level=args.opt_level
                                      )

    net2, optimizer = amp.initialize(net2, optimizer,
                                      opt_level=args.opt_level
                                      )
    start1  = time.time()
    for batch_idx, (inputs_x, inputs_x2, labels_x, w_x) in enumerate(labeled_trainloader):      
        try:
            inputs_u, inputs_u2 = unlabeled_train_iter.next()
        except:
            unlabeled_train_iter = iter(unlabeled_trainloader)
            inputs_u, inputs_u2 = unlabeled_train_iter.next()                 
        batch_size = inputs_x.size(0)
        
        # Transform label to one-hot
        labels_x = torch.zeros(batch_size, args.num_class).scatter_(1, labels_x.view(-1,1), 1)        
        w_x = w_x.view(-1,1).type(torch.FloatTensor) 

        inputs_x, inputs_x2, labels_x, w_x = inputs_x.to(device,non_blocking=True), inputs_x2.to(device,non_blocking=True), labels_x.to(device,non_blocking=True), w_x.to(device,non_blocking=True)
        inputs_u, inputs_u2 = inputs_u.to(device), inputs_u2.to(device)

        with torch.no_grad():
            # label co-guessing of unlabeled samples
            outputs_u11 = net(inputs_u)
            outputs_u12 = net(inputs_u2)
            outputs_u21 = net2(inputs_u)
            outputs_u22 = net2(inputs_u2)            
            
            pu = (torch.softmax(outputs_u11, dim=1) + torch.softmax(outputs_u12, dim=1) + torch.softmax(outputs_u21, dim=1) + torch.softmax(outputs_u22, dim=1)) / 4       
            ptu = pu**(1/args.T) # temparature sharpening
            
            targets_u = ptu / ptu.sum(dim=1, keepdim=True) # normalize
            targets_u = targets_u.detach()       
            
            # label refinement of labeled samples
            outputs_x = net(inputs_x)
            outputs_x2 = net(inputs_x2)            
            
            px = (torch.softmax(outputs_x, dim=1) + torch.softmax(outputs_x2, dim=1)) / 2
            px = w_x*labels_x + (1-w_x)*px              
            ptx = px**(1/args.T) # temparature sharpening 
                       
            targets_x = ptx / ptx.sum(dim=1, keepdim=True) # normalize           
            targets_x = targets_x.detach()       
        
        # mixmatch
        l = np.random.beta(args.alpha, args.alpha)        
        l = max(l, 1-l)
                
        all_inputs = torch.cat([inputs_x, inputs_x2, inputs_u, inputs_u2], dim=0)
        all_targets = torch.cat([targets_x, targets_x, targets_u, targets_u], dim=0)

        idx = torch.randperm(all_inputs.size(0))

        input_a, input_b = all_inputs, all_inputs[idx]
        target_a, target_b = all_targets, all_targets[idx]

        mixed_input = l * input_a[:batch_size*2] + (1 - l) * input_b[:batch_size*2]        
        mixed_target = l * target_a[:batch_size*2] + (1 - l) * target_b[:batch_size*2]
                
        logits = net(mixed_input)
        
        Lx = -torch.mean(torch.sum(F.log_softmax(logits, dim=1) * mixed_target, dim=1))
        
        prior = torch.ones(args.num_class)/args.num_class
        prior = prior.to(device)        
        pred_mean = torch.softmax(logits, dim=1).mean(0)
        penalty = torch.sum(prior*torch.log(prior/pred_mean))
       
        loss = Lx + penalty
        # compute gradient and do SGD step
        optimizer.zero_grad()
        # loss.backward()
        with amp.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()
        optimizer.step()
        if (batch_idx+1)%100 == 1:
            sys.stdout.write(‘\n‘)
            sys.stdout.write(‘%s |%s Epoch [%3d/%3d] Iter[%4d/%4d]\t Labeled loss: %.2f‘
                    %(args.id, whichnet, epoch, args.num_epochs, batch_idx+1, num_iter, Lx.item()))
            sys.stdout.flush()

def warmup(epoch,net,optimizer,dataloader,device,whichnet):
    CEloss = nn.CrossEntropyLoss()
    acc_meter = torchnet.meter.ClassErrorMeter(topk=[1,5], accuracy=True)
    start1  = time.time()
    net.train()
    num_iter = (len(dataloader.dataset)//dataloader.batch_size)+1
    net, optimizer = amp.initialize(net, optimizer,
                                      opt_level=args.opt_level
                                      )
    for batch_idx, (inputs, labels, path) in enumerate(dataloader):   
        if batch_idx < 102:   
            inputs, labels = inputs.to(device), labels.to(device,non_blocking=True) 
            optimizer.zero_grad()
            outputs = net(inputs)               
            loss = CEloss(outputs, labels)   
            
            #penalty = conf_penalty(outputs)
            L = loss #+ penalty 
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()     
            # L.backward()  
            optimizer.step() 
            if (batch_idx+1)%100 == 1:
                end1  = time.time()
                sys.stdout.write(‘\n‘)
                sys.stdout.write(‘%s |%s  Epoch [%3d/%3d] Iter[%4d/%4d]\t CE-loss: %.4f\t %.4f‘
                        %(args.id, whichnet, epoch, args.num_epochs, batch_idx+1, num_iter, loss.item(),end1-start1))
                sys.stdout.flush()

        
def test(epoch,net1,net2,test_loader,device,queue):
    acc_meter = torchnet.meter.ClassErrorMeter(topk=[1,5], accuracy=True)
    acc_meter.reset()
    net1.eval()
    net2.eval()
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(test_loader):
            inputs, targets = inputs.to(device), targets.to(device,non_blocking=True)
            outputs1 = net1(inputs)
            outputs2 = net2(inputs)           
            outputs = outputs1+outputs2
            _, predicted = torch.max(outputs, 1)                 
            acc_meter.add(outputs,targets)
    accs = acc_meter.value()
    queue.put(accs)


def eval_train(eval_loader,model,device,whichnet,queue):   
    CE = nn.CrossEntropyLoss(reduction=‘none‘)
    model.eval()
    num_iter = (len(eval_loader.dataset)//eval_loader.batch_size)+1
    losses = torch.zeros(len(eval_loader.dataset))    
    with torch.no_grad():
        for batch_idx, (inputs, targets, index) in enumerate(eval_loader):
            inputs, targets = inputs.to(device), targets.to(device,non_blocking=True) 
            outputs = model(inputs) 
            loss = CE(outputs, targets)  
            for b in range(inputs.size(0)):
                losses[index[b]]=loss[b] 
            if (batch_idx+1)%100 == 1:      
                sys.stdout.write(‘\n‘)
                sys.stdout.write(‘|%s Evaluating loss Iter[%3d/%3d]\t‘ %(whichnet,batch_idx,num_iter)) 
                sys.stdout.flush()    
                                    
    losses = (losses-losses.min())/(losses.max()-losses.min())    

    # fit a two-component GMM to the loss
    input_loss = losses.reshape(-1,1)
    gmm = GaussianMixture(n_components=2,max_iter=10,tol=1e-2,reg_covar=1e-3)
    gmm.fit(input_loss)
    prob = gmm.predict_proba(input_loss) 
    prob = prob[:,gmm.means_.argmin()]         
    queue.put(prob)

def linear_rampup(current, warm_up, rampup_length=16):
    current = np.clip((current-warm_up) / rampup_length, 0.0, 1.0)
    return args.lambda_u*float(current)

class SemiLoss(object):
    def __call__(self, outputs_x, targets_x, outputs_u, targets_u, epoch, warm_up):
        probs_u = torch.softmax(outputs_u, dim=1)

        Lx = -torch.mean(torch.sum(F.log_softmax(outputs_x, dim=1) * targets_x, dim=1))
        Lu = torch.mean((probs_u - targets_u)**2)

        return Lx, Lu, linear_rampup(epoch,warm_up)

class NegEntropy(object):
    def __call__(self,outputs):
        probs = torch.softmax(outputs, dim=1)
        return torch.mean(torch.sum(probs.log()*probs, dim=1))

def create_model(device):
    #model = InceptionResNetV2(num_classes=args.num_class)
    model = swin_base_patch4_window7_224_in22k()
    model = model.to(device)
    return model

if __name__ == "__main__":
    
    mp.set_start_method(‘spawn‘)
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)    
    
    stats_log=open(‘./checkpoint/%s‘%(args.id)+‘_stats.txt‘,‘w‘) 
    test_log=open(‘./checkpoint/%s‘%(args.id)+‘_acc.txt‘,‘w‘)         
    
    warm_up=1

    loader = dataloader.webvision_dataloader(batch_size=args.batch_size,num_class = args.num_class,num_workers=8,root_dir=args.data_path,log=stats_log)

    print(‘| Building net‘)
    
    net1 = create_model(cuda1)
    net2 = create_model(cuda2)
    
    net1_clone = create_model(cuda2)
    net2_clone = create_model(cuda1)
    
    cudnn.benchmark = True
    
    optimizer1 = optim.SGD(net1.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
    optimizer2 = optim.SGD(net2.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)

    # net1, optimizer1 = amp.initialize(net1, optimizer1,
    #                                   opt_level=args.opt_level
    #                                   )
    # net2, optimizer2 = amp.initialize(net2, optimizer2,
    #                                   opt_level=args.opt_level
    #                                   )
    net1_clone = create_model(cuda2)
    net2_clone = create_model(cuda1)
    
                                     
    # net1 = DDP(net1)
    # net2 = DDP(net2)
    #conf_penalty = NegEntropy()    
    web_valloader = loader.run(‘test‘)
    # imagenet_valloader = loader.run(‘imagenet‘)   
    
    best_acc = [0,0]
    for epoch in range(args.num_epochs+1):   
        time_start=time.time()
        lr=args.lr
        if epoch >= 50:
            lr /= 10      
        for param_group in optimizer1.param_groups:
            param_group[‘lr‘] = lr       
        for param_group in optimizer2.param_groups:
            param_group[‘lr‘] = lr              

        if epoch<warm_up:  
            warmup_trainloader1 = loader.run(‘warmup‘)
            warmup_trainloader2 = loader.run(‘warmup‘)
            print("111")
            p1 = mp.Process(target=warmup, args=(epoch,net1,optimizer1,warmup_trainloader1,cuda1,‘net1‘))                      
            p2 = mp.Process(target=warmup, args=(epoch,net2,optimizer2,warmup_trainloader2,cuda2,‘net2‘))
            print("222")
            p1.start() 
            p2.start()     
            print("333") 

        else:                
            pred1 = (prob1 > args.p_threshold)      
            pred2 = (prob2 > args.p_threshold)      

            labeled_trainloader1, unlabeled_trainloader1 = loader.run(‘train‘,pred2,prob2) # co-divide
            labeled_trainloader2, unlabeled_trainloader2 = loader.run(‘train‘,pred1,prob1) # co-divide
            
            p1 = mp.Process(target=train, args=(epoch,net1,net2_clone,optimizer1,labeled_trainloader1, unlabeled_trainloader1,cuda1,‘net1‘))                             
            p2 = mp.Process(target=train, args=(epoch,net2,net1_clone,optimizer2,labeled_trainloader2, unlabeled_trainloader2,cuda2,‘net2‘))
            p1.start()  
            p2.start()               
        p1.join()
        p2.join()
        print("444") 
        net1_clone.load_state_dict(net1.state_dict())
        net2_clone.load_state_dict(net2.state_dict())
        print("3")
        q1 = mp.Queue()
        q2 = mp.Queue()
        p1 = mp.Process(target=test, args=(epoch,net1,net2_clone,web_valloader,cuda1,q1)) 
        p2 = mp.Process(target=test, args=(epoch,net1_clone,net2,web_valloader,cuda2,q2))                
        # p2 = mp.Process(target=test, args=(epoch,net1_clone,net2,imagenet_valloader,cuda2,q2))
        print("4")
        p1.start()   
        p2.start()
        
        web_acc = q1.get()
        print("5")
        # imagenet_acc = q2.get()
        k = 0
        if web_acc[k] > best_acc[k]:
            best_acc[k] = web_acc[k]
            print(‘| Saving Best Net%d ...‘%k)
            save_point = ‘./checkpoint/%s_net%d.pth.tar‘%(args.id,k)
            torch.save(net1.state_dict(), save_point)
        k = 1
        if web_acc[k] > best_acc[k]:
            best_acc[k] = web_acc[k]
            print(‘| Saving Best Net%d ...‘%k)
            save_point = ‘./checkpoint/%s_net%d.pth.tar‘%(args.id,k)
            torch.save(net2.state_dict(), save_point)
        
        p1.join()
        # p2.join()        
        time_end=time.time()
        print("\n| Test Epoch #%d\t WebVision Acc: %.2f%% (%.2f%%) \n"%(epoch,web_acc[0],web_acc[1]))  
        test_log.write(‘Epoch:%d \t WebVision Acc: %.2f%% (%.2f%%)\t %.2f\n‘%(epoch,web_acc[0],web_acc[1],time_end-time_start))
        test_log.flush()  
        
        eval_loader1 = loader.run(‘eval_train‘)          
        eval_loader2 = loader.run(‘eval_train‘)       
        q1 = mp.Queue()
        q2 = mp.Queue()
        p1 = mp.Process(target=eval_train, args=(eval_loader1,net1,cuda1,‘net1‘,q1))                
        p2 = mp.Process(target=eval_train, args=(eval_loader2,net2,cuda2,‘net2‘,q2))
        print("6")
        p1.start()   
        p2.start()
        
        prob1 = q1.get()
        prob2 = q2.get()
        
        p1.join()
        p2.join()

  

 

pytorch的分布式

原文:https://www.cnblogs.com/ziytong/p/14746036.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!