import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.utils.data as data
import matplotlib.pyplot as plt
import torchvision #数据库模块
torch.manual_seed(1) #reproducible
#Hyper Parameters
EPOCH = 1
BATCH_SIZE = 50
LR = 0.001
train_data = torchvision.datasets.MNIST(
root=‘/mnist/‘, #保存位置
train=True, #training set
transform=torchvision.transforms.ToTensor(), #converts a PIL.Image or numpy.ndarray
#to torch.FloatTensor(C*H*W) in range(0.0,1.0)
download=True
)
test_data = torchvision.datasets.MNIST(root=‘/MNIST/‘)
#如果是普通的Tensor数据,想使用torch_dataset = data.TensorDataset(data_tensor=x, target_tensor=y)
#将Tensor转换成torch能识别的dataset
#批训练, 50 samples, 1 channel, 28*28, (50, 1, 28 ,28)
train_loader = data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1), volatile=True).type(torch.FloatTensor)[:2000]/255.
test_y = test_data.test_labels[:2000]
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Sequential( #input shape (1,28,28)
nn.Conv2d(in_channels=1, #input height
out_channels=16, #n_filter
kernel_size=5, #filter size
stride=1, #filter step
padding=2 #con2d出来的图片大小不变
), #output shape (16,28,28)
nn.ReLU(),
nn.MaxPool2d(kernel_size=2) #2x2采样,output shape (16,14,14)
)
self.conv2 = nn.Sequential(nn.Conv2d(16, 32, 5, 1, 2), #output shape (32,7,7)
nn.ReLU(),
nn.MaxPool2d(2))
self.out = nn.Linear(32*7*7,10)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.size(0), -1) #flat (batch_size, 32*7*7)
output = self.out(x)
return output
cnn = CNN()
print(cnn)
#optimizer
optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)
#loss_fun
loss_func = nn.CrossEntropyLoss()
#training loop
for epoch in range(EPOCH):
for i, (x, y) in enumerate(train_loader):
batch_x = Variable(x)
batch_y = Variable(y)
#输入训练数据
output = cnn(batch_x)
#计算误差
loss = loss_func(output, batch_y)
#清空上一次梯度
optimizer.zero_grad()
#误差反向传递
loss.backward()
#优化器参数更新
optimizer.step()
test_output =cnn(test_x[:10])
pred_y = torch.max(test_output,1)[1].data.numpy().squeeze()
print(pred_y, ‘prediction number‘)
print(test_y[:10])
原文:https://www.cnblogs.com/knightoflake/p/14759960.html